Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-04T12:44:17.889Z Has data issue: false hasContentIssue false

Dynamics of an argon gas-embedded Z-pinch micro-channel as a function of the initial preionization

Published online by Cambridge University Press:  09 March 2009

T. Auguste
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau, (France).
C. Chenais-Popovics
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau, (France).
B. Etlicher
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau, (France).
J.-C. Gauthier
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau, (France).
J.-P. Geindre
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau, (France).
C. Rouillé
Affiliation:
Laboratoire de Physique des Milieux Ionisés, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau, (France).

Abstract

We have studied experimentally the relation between the preionization of a plasma micro-channel in Argon at atmospheric pressure and the dynamics of the discharge initiated by preionization. Preionization is obtained in two different ways: (a) injecting the soft X rays produced by a 3 J, 3 ns YAG laser focused on a copper target through a pinhole (b) direct focusing of a 4ω laser (0·26 μm) along the Argon column. Both experiments and simple numerical models are presented in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaterre, P. et al. 1986 Phys. Rev. A 34, 5.Google Scholar
Auguste, T. 1988 Internal Report PMI-1990.Google Scholar
Braun, C. G. & Kunc, J. A. 1988 Phys. Fluids 31, 671.CrossRefGoogle Scholar
Bruneteau, J. & Fabre, E. 1972 Phys. Lett, 39A, 5.Google Scholar
Chaker, M. et al. 1987 Proc. SPIE,San Diego.Google Scholar
Gauthier, J.-C. & Geindre, J.-P. 1979 Revue Phys. Appl. 14, 887.CrossRefGoogle Scholar
Goldman, E. B. 1973 Report 16, Rochester University.Google Scholar
Henke, B. L. et al. . 1982 Atomic and Nuclear Data Tables 27, 1.CrossRefGoogle Scholar
Holstein, T. 1947 Phys. Rev. 72, 1212.CrossRefGoogle Scholar
Johnston, T. W. & Dawson, J. M. 1973 Phys. Fluids 16, 722.CrossRefGoogle Scholar
Keldysh, I. V. 1965 Soviet Physics JETP 20, 1307.Google Scholar
Perry, M. D. et al. 1988 Phys. Rev. A 37, 747.CrossRefGoogle Scholar
Virmont, J. 1974 Internal Report PMI-639.Google Scholar