Skip to main content Accessibility help
×
Home

Design of a high-efficiency dual-band coaxial relativistic backward wave oscillator with variable coupling impedance and phase velocity

  • Yongfu Tang (a1), Lin Meng (a1), Hailong Li (a1), Ling Zheng (a1), Bin Wang (a1) and Feina Zhang (a1)...

Abstract

A dual-band high-efficiency coaxial relativistic backward wave oscillator (CRBWO) with asymmetric resonant reflector is designed and presented in this paper. Improved sectioned coaxial slow wave structure (SWS) with stepwise variation of coupling impedance and phase velocity is employed, and the performance of the dual-band CRBWO is investigated by use of a 2.5-D particle-in-cell (PIC) simulation code. When the diode voltage is 510 kV and beam current is 9.03 kA, an average microwave power of 1.0 GW with power conversion efficiency of 21.7% is obtained. Synchronously radiating dual-band frequencies of 8.1 GHz and 9.9 GHz are obtained, corresponding to C-band and X-band, respectively. A more clear and stable beating radiation microwave power with beating frequency of 1.8 GHz is acquired.

Copyright

Corresponding author

Address correspondence and reprint requests to: Yongfu Tang, 435, Yifu Building, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan, Peoples Republic of China. E-mail: yongfu.tang@gmail.com

References

Hide All
Carmel, Y., Lou, W.R., Rodgers, J., Guo, H., Destler, W.W., Granatstein, V.L., Levush, B., Antonsen, T. Jr. & Bromborsky, A. (1992). From linearity towards chaos: basic studies of relativistic backward-wave oscillators. Phys. Rev. Lett. 69, 16521655.
Chen, C.H., Liu, G.Z., Huang, W.H., Song, Z.M., Fan, J.P. & Wang, H.J. (2002). A repetitive X-band relativistic backward-wave oscillator. IEEE Trans. Plasma Sci. 30, 11081111.
Chen, D.B., Wang, D., Meng, F.B. & Fan, Z.K. (2009). Bifrequency magnetically insulated transmission line oscillator. IEEE Trans.Plasma Sci. 37, 2329.
Ju, J.C., Fan, Y.W., Zhong, H.H. & Shu, T. (2009). A novel dual-frequency magnetically insulated transmission line oscillator. IEEE Trans.Plasma Sci. 37, 20412047.
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I.V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.
Ginzburg, N.S., Rozental, R.M. & Sergeev, A.S. (2003 a). Dual band operation of the relativistic BWO. Proc. 4th IEEE International Conference on Vacuum Electronics, 181–182.
Ginzburg, N.S., Rozental, R.M. & Sergeev, A.S. (2003 b). On the synthesis of radiation spectrum in a sectioned relativistic backward wave tube. Techn. Phys. Lett. 29, 164167.
Ginzburg, N.S., Zaitsev, N.I., Ilyakov, E.V., Kulagin, I.S., Novozhilova, Y.V., Rozenthal, R.M. & Sergeev, A.S. (2002). Observation of chaotic dynamics in a powerful backward-wave oscillator. Phys. Rev. Lett. 89, 108304.
He, J.T., Cao, Y.B., Zhang, J.D., Wang, T. & Ling, J.P. (2011). Design of a dual-frequency high-power microwave generator. Laser Part. Beams 29, 479485.
Huang, F., Wang, D., Xing, Q.Z. & Deng, J.K. (2005). Study on the region of instable beam-wave interaction in a relativistic backward wave oscillator. High Power Laser Part. Beams 17, 15471552.
Kang, Y.B., Kim, D.H., Titov, V.N. & Park, G.S. (2003). Chaotic signal generation from relativistic backward-wave oscillator. Proc. 4th IEEE International Conference on Vacuum Electronics, 187–188.
Kitsanov, S.A., Klimov, A.I., Korovin, S.D., Kurkan, I.K., Pegel, I.V. & Polevin, S.D. (2003). Decimeter-wave resonant relativistic BWO. Radiophysics Quan. Electr. 46, 797801.
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimeter-band frequency-tunable sources of high-power microwave pulse. Laser Part. Beams 21, 175185.
Li, G.L., Shu, T., Yuan, C.W., Zhu, J., Liu, J., Wang, B. & Zhang, J. (2010). Simultaneous operation of X band gigawatt level high power microwaves. Laser Part. Beams 28, 3544.
Liu, G.Z., Xiao, R.Z., Chen, C.H., Shao, H., Hu, Y.M. & Wang, H.J. (2008). A Cerenkov generator with coaxial slow wave structure. J. Appl. Phys. 103, 093303.
Moreland, L.D., Schamiloglu, E. & Lemke, R.W. (1995). Effects of end reflections on the performance of relativistic backward wave oscillators. Proc. 10th IEEE Pulsed power Conf., Albuquerque, 705–710.
Ryskin, N.M. & Titov, V.N. (2001). Self-modulation and chaotic regimes of generation in a relativistic backward-wave oscillator with end reflections. Radiophysics Quan. Electr. 44, 793806.
Swegle, J.A., Poukey, J.W. & Leifeste, G.T. (1985). Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation. Phys. Fluids 28, 28822894.
Tang, Y.F., Meng, L., Li, H.L., Zheng, L., Yin, Y. & Wang, B. (2012). A dual-frequency coaxial relativistic backward-wave oscillator with a modulating resonant reflector. Phys. Scripta 85, 055801.
Teng, Y., Liu, G.Z., Shao, H. & Tang, C.X. (2009). A new reflector designed for efficiency enhancement of CRBWO. IEEE Trans. Plasma Sci. 37, 10621068.
User's Manual of Code CHIPIC. (2004). Chengdu: University of Electronic Science and Technology of China Chengdu
Wang, T., Qian, B.L., Zhang, J.D., Zhang, X.P., Cao, Y.B. & Zhang, Q. (2011). Preliminary experimental investigation of a dual-band relativistic backward wave oscillator with dual beams. Phys. Plasmas 18, 013107.
Wang, T., Zhang, J.D., Qian, B.L., & Zhang, X.P. (2010). Dual-band relativistic backward wave oscillators based on a single beam and dual beams. Phys. Plasmas 17, 043107.
Wen, G.J., Li, J.Y., Xie, F.Z. & Liu, S.G. (1999). Coaxial relativistic backward wave oscillator and coaxial master oscillator-power amplifier. Internat. J. Infrared . Millimeter Waves 20, 5769.
Xiao, R.Z., Zhang, X.W., Zhang, L.J., Li, X.Z., Zhang, L.G., Song, W., Hu, Y.M., Sun, J., Huo, S.F., Chen, C.H., Zhang, Q.Y. & Liu, G.Z. (2010). Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator. Laser Part. Beams 28, 505511.
Yang, Z.Q., Liang, Z., Zhang, B., Li, J.Y., Ma, W.D., Hu, S.X. & Liu, S.G. (1999). A Cherenkov oscillator operating at two different wave bands. Internat. J. Infrared Millimeter Waves 20, 8392.
Yue, L.N., Wang, W.X., Gong, Y.B. & Zhang, K.Q. (2004). Analysis of coaxial ridged disk-loaded slow-wave structures for relativistic traveling wave tubes. IEEE Trans. Plasma Sci. 30, 10861092.
Zhang, Q., Yuan, C.W. & Liu, L. (2010). Design of a dual-band power combining architecture for high-power microwave applications. Laser Part. Beams 28, 377385.
Zheng, X.D., Minami, K., Amin, M.R. & Watanable, T. (1995). Linear analysis of a backward wave oscillator with coaxial slow wave structure. J. Phys. Soc. Japan 64, 14021411.
Zhou, J., Liu, D.G., Liao, C. & Li, Z.H. (2009). An efficient code for electromagnetic PIC modeling and simulation. IEEE Trans. Plasma Sci. 37, 20022011.

Keywords

Design of a high-efficiency dual-band coaxial relativistic backward wave oscillator with variable coupling impedance and phase velocity

  • Yongfu Tang (a1), Lin Meng (a1), Hailong Li (a1), Ling Zheng (a1), Bin Wang (a1) and Feina Zhang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed