Skip to main content Accessibility help

Comparison between illumination model and hydrodynamic simulation for a direct drive laser irradiated target

  • M. Temporal (a1), B. Canaud (a2), W.J. Garbett (a3) and R. Ramis (a4)


A spherical target irradiated by laser beams located at 49o and 131° with respect to the polar axis has been considered. The illumination model has been used to evaluate the irradiation non-uniformity assuming circular and elliptical super-Gaussian laser intensity profiles and the irradiation scheme has been optimized by means of the polar direct drive technique. A parametric study has been performed providing the irradiation non-uniformity as a function of the polar direct drive displacement and of the laser intensity profile parameters. Moreover, two-dimensional axis-symmetric hydrodynamic simulations have been performed for a plastic sphere irradiated by laser beams characterized by a constant flat temporal power pulse. In these simulations, the front of the inward shock wave has been tracked providing the time-evolution of any non-uniformity. The results provided by the two methods — illumination model and hydrodynamic data — have been compared and it is found that the illumination model reproduces the main behavior exhibited by the hydrodynamic data. The two models provide compatible values for the optimum polar direct drive parameter and similar optimal super-Gaussian profiles.


Corresponding author

Address correspondence and reprint requests to: M. Temporal, Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex, France. E-mail:


Hide All
Atzeni, S. (1987). The physical basis for numerical fluid simulations in laser fusion. Plasma Phys. Contr. Fusion 29, 15351604.
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Press.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.
Bodner, S.E., Colombant, D.G., Schmitt, A.J., Gardner, J.H., Lehmberg, R.H. & Obenschain, S.P. (2002). Overview of new high gain target design for a laser fusion power plant. Fusion Engin. Design 60, 9398.
Brandon, V., Canaud, B., Primut, M., Laffite, S. & Temporal, M. (2013). Marginally igniting direct-drive target designs for the laser megajoule. Laser Part. Beam 31, 141.
Canaud, B., Fortin, X., Dague, N. & Bocher, J.L. (2002). Laser megajoule irradiation uniformity for direct drive. Phys. Plasmas 9, 42524260.
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004 a). Progress in direct-drive fusion studies for the laser megajoule. Laser Part. Beams 22, 109114.
Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F., Temporal, M., Atzeni, S. & Schiavi, A. (2004b). High-gain direct-drive target design for the laser megajoule. Nucl. Fusion 44, 11181129.
Canaud, B., Garaude, F., Ballereau, P., Bourgade, J.L., Clique, C., Dureau, D., Houry, M., Jaouen, S., Jourdren, H., Lecler, N., Masse, L., Masson, A., Quach, R., Piron, R., Riz, D., Van Der Vliet, J., Temporal, M., Delettrez, J.A. & Mckenty, P.W. (2007 a). High-gain direct-drive inertial confinement fusion for the laser meajoule: Recent progress. Plasma Phys. Contr. Fusion 49, B601.
Canaud, B., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R. & Van Der Vliet, J. (2007 b). High-gain direct-drive laser fusion with indirect drive beam layout of laser megajoule. Nucl. Fusion 47, 16521655.
Canaud, B., Brandon, V., Laffite, S. & Temporal, M. (2012). 2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule. Laser Part. Beams 30, 183189.
Cavailler, C. (2005). Inertial fusion with the LMJ. Plasma Phys. Contr. Fusion 47, B389.
Craxton, R.S., Marshall, F.J., Bonino, M.J., Epstein, R., Mckenty, P.W., Skupsky, S., Deletrez, J.A., Igumenshchev, I.W., Jacobs-Perkins, D.W., Knauer, J.P., Marozas, J.A., Radha, P.B. & Seka, W. (2005). Polar direct drive: Proof-of-principle experiments on OMEGA and prospects for ignition on the National Ignition Facility. Phys. Plasmas 12, 056304.
Hopps, N., Danson, C., Duffield, S., Egan, D., Elsmere, S., Girling, M., Harvey, E., Hillier, D., Norman, M., Parker, S., Treadwell, P., Winter, D. & Bett, T. (2013). Overview of laser systems for the Orion facility at the AWE. Appl. Opt. 52, 3597.
Kyrala, G.A., Seifter, A., Kline, J.L., Goldman, S.R., Batha, S.H. & Hoffman, N.M. (2011). Tuning indirect-drive implosions using cone power balance. Phys. Plasmas 18, 072703.
Landen, O.L., Edwards, J., Haan, S.W., Robey, H.F., Milovich, J., Spears, B.K., Weber, S.V., Clark, D.S., Lindl, J.D., Macgowan, B.J., Moses, E.I., Atherton, J., Amendt, P.A., Boehly, T.R., Bradley, D.K., Braun, D.J., Callahan, D.A., Celliers, P.M., Collins, J.W., Dewald, E.L., Divol, L., Frenje, J.A., Glenzer, S.H., Hamza, A., Hammel, B.A., Hicks, D.G., Hoffman, N., Izumi, N., Jones, O.S., Kilkenny, J.D., Kirkwood, R.K., Kline, J.L., Kyrala, G.A., Marinak, M.M., Meezan, N., Meyerhofer, D.D., Michel, P., Munro, D.H., Olson, R.E., Nikroo, A., Regan, S.P., Suter, L.J., Thomas, C.A. & Wilson, D.C. (2011). Capsule implosion optimization during the indirect-drive National Ignition Campaign. Phys. Plasmas 18, 051002.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 2, 339.
Lindl, J., Landen, O., Edwards, J., Moses, E. & Nic, Team (2014). Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501.
Lion, C. (2010). The LMJ program: an overview. J. Phys.: Confer. Ser. 244, 012003.
Mckenty, P.W., Sangster, T.C., Alexander, M., Betti, R., Craxton, R.S., Deletrez, J.A., Elasky, L., Epstein, R., Frank, A., Yu. Glebov, V., Goncharov, V.N., Harding, D.R., Jin, S., Knauer, J.P., Keck, R.L., Loucks, S.J., Lund, L.D., Mccrory, R.L., Marshall, F.J., Meyerhofer, D.D., Regan, S.P., Radha, P.B., Roberts, S., Seka, W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Thorp, K.A., Wozniak, M., Frenje, J.A., Li, C.K., Petrasso, R.D., Seguin, F.H., Fletcher, K.A., Paladino, S., Freeman, C., Izumi, N., Koch, J.A., Lerche, R.A., Moran, M.J., Phillips, T.W., Schmid, G.J. & Sorce, C. (2004). Direct-drive cryogenic target implosion performance on OMEGA. Phys. Plasmas 11, 290.
Miller, G.H., Moses, E.I. & Wuest, C.R. (2004). The National Ignition Facility: Enabling fusion ignition for the 21st century. Nucl. Fusion 44, S228.
Moses, E.I., Boyd, R.N., Remington, B.A., Keane, C.J. & Al-Ayat, R. (2009). The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas 16, 041006.
Murakami, M., Nishihara, K. & Azechi, H. (1993). Irradiation non-uniformity due to imperfections of laser beams. J. Appl. Phys. 74, 802808.
Murakami, M. (1995). Irradiation system based on dodecahedron for inertial confinement fusion. Appl. Phys. Lett. 66, 1587.
Murakami, M., Sarukura, N., Azechi, H., Temporal, M. & Schmitt, A.J. (2010). Optimization of irradiation configuration in laser fusion utilizing self-organizing electrodynamic system. Phys. Plasmas 17, 082702.
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nat. 239, 139142.
Schmitt, A.J. (1984). Absolutely uniform illumination of laser fusion pellets. Appl. Phys. Lett. 44, 399401.
Skupsky, S. & Lee, K. (1983). Uniformity of energy deposition for laser driven fusion. J. Appl. Phys. 54, 36623671.
Skupsky, S., Marozas, J.A., Craxton, R.S., Betti, R., Collins, T.J.B., Deletrez, J.A., Goncarov, V.N., Mckenty, P.W., Radha, P.B., Knauer, J.P., Marshall, F.J., Harding, D.R., Kilkenny, J.D., Meyerhofer, D.D., Sangster, T.C. & Mccrory, R.L. (2004). Polar direct drive on the National Ignition Facility. Plasma Phys. 11, 2763.
Temporal, M. & Canaud, B. (2009). Numerical analysis of the irradiation uniformity of a directly driven inertial confinement fusion capsule. Euro. Phys. J. D 55, 139.
Temporal, M., Canaud, B. & Le Garrec, B.J. (2010 a). Irradiation uniformity and zooming performances for a capsule directly driven by a 32 × 9 laser beams configuration. Phys. Plasmas 17, 022701.
Temporal, M., Canaud, B., Laffite, S., Le Garrec, B.J. & Murakami, M. (2010 b). Illumination uniformity of a capsule directly driven by a laser facility with 32 or 48 directions of irradiation. Phys. Plasmas 17, 064504.
Temporal, M., Ramis, R., Canaud, B., Brandon, V., Laffite, S. & Le Garrec, B.J. (2011). Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme. Plasma Phys. Contr. Fusion 53, 124008.
Temporal, M. & Canaud, B. (2011). Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams. Euro. Phys. J. D 65, 447.
Temporal, M., Canaud, B., Garbett, W.J., Philippe, F. & Ramis, R. (2013). Polar direct drive illumination uniformity provided by the Orion facility. Euro. Phys. J. D 67, 205.
Temporal, M., Canaud, B., Garbett, W.J. & Ramis, R. (2014 a). Numerical analysis of the direct drive illumination uniformity for the laser megajoule facility. Phys. Plasmas 21, 012710.
Temporal, M., Canaud, B., Garbett, W.J. & Ramis, R. (2014 b). Irradiation uniformity at the laser megajoule facility in the context of the shock ignition scheme. Hi. Power Laser Sci. Engin. 2, e8.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed