Skip to main content Accessibility help

Advanced concepts and methods for very high intensity accelerators

  • P.A.P. Nghiem (a1), N. Chauvin (a1), M. Comunian (a2), C. Oliver (a3), W. Simeoni (a4), D. Uriot (a1) and M. Valette (a1)...


For very high intensity accelerators, not only beam power but also space charge is a concern. Both aspects should be taken into consideration for any analysis of accelerators aiming at comparing their performances and pointing out the challenging sections. As high beam power is an issue from the lowest energy, careful and exhaustive beam loss predictions have to be done. High space charge implies lattice compactness making the implementation of beam diagnostics very problematic, so a clear strategy for beam diagnostic has to be defined. Beam halo is no longer negligible. Its dynamics is different from that of the core and plays a significant role in the particle loss process. Therefore, beam optimization must take the halo into account and beam characterization must be able to describe the halo part in addition to the core one. This paper presents the advanced concepts and methods for beam analysis, beam loss prediction, beam optimization, beam diagnostic, and beam characterization especially dedicated to very high intensity accelerators. Examples of application of these concepts are given in the case of the IFMIF accelerators.


Corresponding author

Address correspondence and reprint requests to: P. A. P. Nghiem, CEA/DSM/IRFU, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France. E-mail:


Hide All
Allen, C.K. & Wangler, T.P. (2002). Beam halo definitions based upon moments of the particle distribution. Phys. Rev. Spec. Accelerators and Beams 5, 12420.
Bangerter, R.O., Faltens, A. & Seidl, P.A. (2013). Accelerators for inertial fusion energy production. Rev. Accel. Sci. Techn. 6, 85116.
Chauvin, N., Duperrier, R., Mosnier, A., Nghiem, P.A.P. & Uriot, D. (2009). Optimisation results of beam dynamics simulations for the superconducting HWR Linac. Proc. of PAC. Vancouver, BC, Canada.
Chauvin, N., Delferrière, O., Duperrier, R., Gobin, R., Nghiem, P.A.P. & Uriot, D. (2012). Transport of intense ion beams and space charge compensation issues in low energy beam lines. Rev. Sci. Instru. 83, 02B320.
Chen, C. & Davidson, R.C. (1994). Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam. Phys. Rev. Lett. 72, 2195.
Chen, C. & Jameson, R.A. (1994). Self-consistent simulation studies of periodically focused intense charged-particle beams. Phys. Rev. E 52, 3074.
Duperrier, R., Pichoff, N. & Uriot, D. (2002). CEA Saclay codes review for high intensity linacs computations. Proc. of ICCS, Amsterdam, Netherlands.
Gluckstern, R.L. (1994). Analytic model for halo formation in high current ion linacs. Phys. Rev. Lett. 73, 1247.
Hofmann, I. (2013). Halo coupling and cleaning by a space charge resonance in high intensity beams. Phys. Rev. Spec. Accelerators and Beams 16, 084201.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A.,Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Jeon, D.-O. (2013). Evidence of a halo formation mechanism in the spallation neutron source linac. Phys. Rev. Spec. Accelerators and Beams 16, 040103.
Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proc. of IEEE International Conference on Neural Networks 4, 1942–1948.
Marroncle, J., Abbon, P., Egberts, J. & Pomorski, M. (2011). Micro-loss detector for IFMIF-EVEDA. Proc. of DIPAC11. Hamburg, Germany.
Mokhov, N.V. & Chou, W. (1999). Proc. of 7th ICFA Mini-Workshop on High Intensity High Brightness Hadron Beams. Lake Como, Wisconsin, USA.
Mustafin, E., Boine-Frankenheim, O., Hofmann, I. & Spiller, P. (2002). Beam losses in heavy ion drivers. Laser Part. Beams 20, 637640.
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C. & Uriot, D. (2011 a). The IFMIF-EVEDA challenges in beam dynamics and their treatment. Nucl. Instru. Meth. Phys. Res. A 654, 6371.
Nghiem, P.A.P., Chauvin, N., Counienc, E. & Oliver, C. (2011 b). Studies of emittance measurement by quadrupole variation for the IFMIF-EVEDA high space-charge beam. Proc. of IPAC. San Sebastián, Spain.
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C., Simeoni, W. Jr. & Uriot, D. (2014 a). Dynamics of the IFMIF very high intensity beam. Laser Part. Beams 32, 109118.
Nghiem, P.A.P., Chauvin, N., Simeoni, W. Jr. & Uriot, D. (2014 b). Core-halo issues for a very high intensity beam. Appl. Phys. Lett. 104, 074109.
Nghiem, P.A.P., Chauvin, N., Comunian, M.A., Oliver, C. & Uriot, D. (2014 c). A catalogue of losses for a high power, high intensity accelerator. Laser Part. Beams 32, 461469.
Nghiem, P.A.P., Valette, M., Chauvin, N., Pichoff, N. & Uriot, D. (2014 d). Core-halo limit: An indicator of high intensity beam internal dynamics. To be published.
Sugimoto, M. & Takeuchi, H. (2004). Low activation materials applicable to the IFMIF accelerator. J. Nucl. Mater. 329–333, 198201.
Wangler, T.P. (2008). RF Linear Accelerators. New York: Wiley, 289.
Wangler, T.P. & Crandall, K.R. (2000). Beam halo in proton linac beams. Proc. of XX International Linac Conference, Monterey, California.
Wei, J., Fischer, W. & Manning, P. (2003). Beam halo dynamics, diagnostics and collimation. Proc. of HALO'03 workshop, vol. 693, AIP.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed