Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-v5sh4 Total loading time: 10.939 Render date: 2021-04-11T07:59:41.490Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Three–dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS

Published online by Cambridge University Press:  08 January 2009

N.A. Tahir
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
A. Matveichev
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
V. Kim
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A. Ostrik
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A. Shutov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
V. Sultanov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
I.V. Lomonosov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
Corresponding
E-mail address:

Abstract

This paper presents three–dimensional numerical simulations of thermodynamic and hydrodynamic response of a wheel shaped solid graphite production target for the super conducting fragment separator (Super–FRS) that is irradiated with a fast extracted high intensity uranium beam. These fragment separator experiments will be carried out at the future Facility for Antiprotons and Ion Research (FAIR), at Darmstadt. Previously, we reported simulation results that were carried out using two–dimensional computer codes which showed that one can use a solid graphite target for the Super-FRS for the highest intensity (5 × 1011 ions per spill) of the fast extracted uranium beam. Present results, however, have shown that due to three–dimensional effects the maximum intensity that can be used with such a target is 3 × 1011 ions per spill. A detailed comparison between two–dimensional and three–dimensional results is presented in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

Fortov, V.E., Kim, V.V., Lomonosov, I.V., Matveichev, A.V. & Ostrik, A.V. (2006). Numerical modeling of hypervelocity impacts. Intl. J. Impact Engin. 33, 244253.CrossRefGoogle Scholar
Geissel, H., Weick, H., Münzenberg, G., Chichkine, V., Yavor, M., Aumann, T., Behr, K.H., Böhmer, A., Brünle, A., Burkahrd, K., Benlliure, J., Cortina-Gil, D., Chulkov, L., Dael, A., Ducret, J.-E., Emling, H., Franczak, B., Friese, J., Gastineau, B., Gerl, J., Gernhäuser, R., Hellström, M., Johnson, B., Kojouharova, J., Kulessa, R., Kindler, B., Kurz, N., Lommel, B., Mittig, W., Moritz, G., Mühle, , Nolen, J.A., Nyman, G., Rousell-Chomaz, P., Scheindenberger, C., Schmidt, K.-H., Schrieder, G., Sherrill, B.M., Simon, H., Sümmerer, K., Tahir, N.A., Vysotsky, V., Wollnik, H. & Zeller, A.F. (2003). The Super-FRS project at GSI . Nucl. Instrum. Meth. Phys. Res. B 204, 7185.CrossRefGoogle Scholar
Heidenreich, G. (2002). Carbon and beryllium targets at PSI. Hi. Intensity Hi Brightness Hadron Beams 642, 124130.Google Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. Meth. Phys. Res. B 214, 211215.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives of high energy density physics with intense ions and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Kerley, G.I. (2001). Multi-component multiphase equation-of-state for carbon. Sandia Nat. Lab. Rep. SAND2001-2619, 147.Google Scholar
Lopez Cela, J.J., Piriz, A.R., Serena Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427535.Google Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hofmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E 66, 056403.CrossRefGoogle ScholarPubMed
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003). Generation of a hollow ion beam: calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501.CrossRefGoogle ScholarPubMed
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72, 056313.CrossRefGoogle ScholarPubMed
Piriz, A.R., Lopez Cela, J.J., Serena Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275282.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Lopez Cela, J.J., Cortazar, O.D., Serna Moreno, M.C., Temporal, M. & Hoffmann, D.H.H. (2007). Analytic models for the design of the LAPLAS target. Contribu. Plasma Phys. 47, 213222.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Serna, M., Oreno, M.C., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2007). A new approach to Rayleigh–Taylor instability: Applications to accelerated elastic solids. Nucl. Instrum. Meth. Phys. Res. A 577, 250256.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Spiller, P. & Bock, R. (1999). Heavy ion-induced hydrodynamic effects in solid targets. Phys. Rev. E 60, 47154724.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E 61, 19751980.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E 62, 12241233.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva Spiller, P., Hoffmann, D.H.H., Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E 63, 036407.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Nuener, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E 63, 016402.CrossRefGoogle Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003 a). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B 67, 184101.CrossRefGoogle Scholar
Tahir, N.A., Winkler, M., Kojouharova, J., Rousell-Chomaz, P., Chichkine, V., Geissel, H., Hoffmann, D.H.H., Kindler, B., Landre-Pellemoine, F., Lommel, B., Mittig, W., Münzenberg, G., Shutov, A., Weick, H. & Yavor, M. (2003 b). High-power production targets for the Super-FRS using a fast extraction scheme. Nucl. Instrum. Meth. Phys. Res. B 204, 282285.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 a). Studies of heavy ion-induced high energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Meth. Phys. Res. A 544, 1626.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 b). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle ScholarPubMed
Tahir, N.A., Weick, H., Iwase, H., Geissel, H., Hoffmann, D.H.H., Kindler, B., Lommel, B., Radon, T., Münzenberg, G., Sümmerer, K. (2005 c). Calculations of high-power production target and beam dump for the GSI future Super-FRS for a fast extraction scheme at the FAIR facility. J. Phys. D: Appl. Phys. 38, 18281837.CrossRefGoogle Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 d). Impact of 7-Tev/c large hadron collider proton beam on a copper target. J. Appl. Phys. 97, 083532.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 e). The CERN large hadron collider as a tool to study high-energy-density physics. Phys. Rev. Lett. 94, 135004.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M., Varentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration. Nucl. Instrum. Methods Phys. Res. B. 245, 8593.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). HEDgeHOB: High-energydensity matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A 577, 238249.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). Survey of theoretical work for the proposed HEDgeHOB collaboration: HIHEX and LAPLAS. Contribu. Plasma Phys. 47, 223233.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 c). Prospects of high energy density research using the CERN super proton synchrotron. Laser Part. Beams 25, 639–637.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matveichev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Weick, LopezCela, J.J. & Hoffmann, D.H.H. (2007 d). Numerical modeling of heavy ion induced thermal stress waves in solid targets. Laser Part. Beams 25, 523540.CrossRefGoogle Scholar
TAHIR, N.A., KIM, V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007 e). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295304.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Brugger, M., Assmann, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Hoffmann, D.H.H., Deutsch, C. & Fortov, V.E. (2008 a). The CERN super proton synchrotron as a tool to study high energy density physics. New J. Phys. 10, 073028.CrossRefGoogle Scholar
Tahir, N.A., Kim, V.V., Matveichev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2008 b). High energy density and beam induced stress related issues in solid graphite Super–FRS fast extraction targets. Laser Part. Beams 26, 273286.Google Scholar
Tahir, N.A., Shutov, A., Kim, V., Matveichev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R. & Hoffmann, D.H.H. (2008 c). Simulatiuon of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS. Laser Part. Beams 26, 411423.Google Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A., Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609614.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 3
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Three–dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Three–dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Three–dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *