Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-tfp9r Total loading time: 0.335 Render date: 2023-02-09T00:06:22.138Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Thermal behavior change in the self-focusing of an intense laser beam in magnetized electron-ion-positron plasma

Published online by Cambridge University Press:  11 April 2014

N. Sepehri Javan*
Affiliation:
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran
M. Hosseinpour Azad
Affiliation:
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran
*
Address correspondence and reprint requests to: N. Sepehri Javan, Department of physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran. E-mail: sepehri_javan@uma.ac.ir

Abstract

Self-focusing of an intense circularly-polarized laser beam in a hot electron-positron-ion magneto-plasma is studied. Using a relativistic fluid model, nonlinear equation describing laser-plasma interaction in the quasi-neutral approximation is derived. Expanding nonlinear current density in terms of normalized vector potential and saving only the parabolic terms, we investigated the self-focusing phenomenon for right- and left-hand circularly polarized laser beams. The evolution of laser beam spot size with Gaussian profile is considered. Effects of the external magnetic field, fraction of electron-positron pairs, and also the kind of polarization on the self-focusing property are studied. It is shown that a mixture of electron-positron pairs to the ion-electron plasma modifies the behavior of plasma with respect to the external magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhurov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609634.CrossRefGoogle Scholar
Berezhiani, V.I., Tskhakaya, D.D. & Shukla, P.K. (1992). Pair production in a strong wakefield driven by an intense short laser pulse. Phys. Rev. A 46, 66086612.CrossRefGoogle Scholar
Cumberbatch, E. (1970). Self-focusing in non-linear optics. J. Inst. Maths. Appl. 6, 250312.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas, IEEE J. Quan.Electr. 33, 18791914.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Upadhyay, A.K. & Raj, G. (2007). Spot-size evolution of laser beam propagating in plasma embedded in axial magnetic field. Phys. Plasmas 14, 114504114507.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Upadhyaya, A.K. & Raj, G. (2006). Self-focusing of intense laser beam in magnetized plasma. Phys. Plasmas 13, 103102103107.CrossRefGoogle Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyaya, A.K. (2005). Modulation instability of laser pulse in magnetized plasma. Phys. Plasmas 12, 123104123110.CrossRefGoogle Scholar
Krushelnick, K., Ting, S., Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 40474050.CrossRefGoogle Scholar
Lemoff, B.E., Yin, G.Y., Gordan Iii, C.L., Barty, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-hz, femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 15741577.CrossRefGoogle Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.CrossRefGoogle Scholar
Michel, F.C. (1982). Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
Milchberg, H.M., Durfee Iii, C.G. & Macilrath, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.CrossRefGoogle Scholar
Mori, W.B. (1997). The physics of the nonlinear optics of plasmas at relativistic intensities. IEEE J. Quan. Electr. 33, 19421953.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Perkins, F.W. & Valeo, E.J. (1974). Thermal self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 32, 12341237.CrossRefGoogle Scholar
Rao, N.N., Shukla, P.K. & Yu, M.Y. (1984). Strong electromagnetic pulses in magnetized plasmas. Phys. Fluids 27, 26642668.CrossRefGoogle Scholar
Rees, M.J. (1983). The Very Early Universe (Gibbons, G.W., Hawking, S.W. & Siklos, S., Eds.). Cambridge, UK: Cambridge University Press.Google Scholar
Sepehri Javan, N. & Adli, F. (2013). Relativistic nonlinear dynamics of an intense laser beam propagating in a hot electron-positron magnetoactive plasma. Phys. Plasmas 20, 062301062312.CrossRefGoogle Scholar
Sepehri Javan, N. & Nasirzadeh, Z.H. (2012). Self-focusing of circularly polarized laser pulse in the hot magnetized plasma in the quasi-neutral limit. Phys. Plasmas 19, 112304112310.CrossRefGoogle Scholar
Sepehri Javan, N. (2013). Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma. Phys. Plasmas 20, 012120012126.CrossRefGoogle Scholar
Shukla, P.K. (1999). Generation of wakefields by elliptically polarized laser pulses in a magnetized plasma. Phys. Plasmas 6, 13631365.CrossRefGoogle Scholar
Shukla, P.K., Marklund, M. & Eliasson, B. (2004). Nonlinear dynamics of intense laser pulses in a pair plasma. Phys. Lett. A 324, 193197.CrossRefGoogle Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 20112014.CrossRefGoogle ScholarPubMed
Surko, C.M., Levethal, M., Crane, W.S., Passne, A. & Wysocki, F. (1986). Use of positrons to study transport in tokamak plasmas. Rev. Sci. Instrum. 57, 18621867.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R. (1994). Ignition and high gain with ultrapowerful lasers. J. Phys. Plasmas 1, 16261635.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Varshney, M.A., Sen, S., Rathore, B. & Varshney, D. (2011). Propagation regimes of intense circularly polarized laser beam in magnetoactive plasma. Optik 122, 395401.CrossRefGoogle Scholar
Wagner, R., Chen, S.Y., Maksimonchuk, A. & Unstadter, D. (1997). Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 31253128.CrossRefGoogle Scholar
Zhou, J., Peatross, J., Murnane, M.M., Kapteyn, H. & Christov, I.P. (1996). Enhanced high harmonic generation using 25 femtosecond laser pulses. Phys. Rev. Lett. 76, 752755.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermal behavior change in the self-focusing of an intense laser beam in magnetized electron-ion-positron plasma
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Thermal behavior change in the self-focusing of an intense laser beam in magnetized electron-ion-positron plasma
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Thermal behavior change in the self-focusing of an intense laser beam in magnetized electron-ion-positron plasma
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *