Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T21:53:21.715Z Has data issue: false hasContentIssue false

Pellet fusion gain calculations modified by electric double layers and by spin polarized nuclei

Published online by Cambridge University Press:  09 March 2009

L. Cicchitelli
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
J. S. Elijah
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
S. Eliezer
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
A. K. Ghatak
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
M. P. Goldsworthy
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia
P. Lalousis
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia

Abstract

All preceding hydrodynamic computations of plasmas need correction if the thermal conductivity is used because electronic thermal conductivity is decreased on plasma inhomogeneities due to electrostatic double layers. In the worst case, ionic conductivity remains. We compare this with a possible electronic conductivity by the fast tail of the energy distribution. Using the volume ignition for fusion gain computations, we study the increase of gain by spin-polarization of nuclei for the DT reaction especially in nonlinear ranges. Gain can increase by a factor of 3·1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, H. F. 1982 Physics of Laser Fusion II (Nat. Tech. Inf. Service, Springfield, Va.).Google Scholar
Alfven, H. 1981 Cosmic Plasma (Reidel, Dordrecht).Google Scholar
Boreham, B. & Hora, H. 1979 Phys. Rev. Lett. 42, 776.CrossRefGoogle Scholar
Cicchitelli, L. & Hora, H. 1982 Rept. Dept. Theor. Phys. Univ. N.S.Q., No. 31 (Oct.).Google Scholar
Clark, R. G., Hora, H., Ray, P. S. & Titterton, E. W. 1978 Phys. Rev. C18, 1127.Google Scholar
Xi-Ming, Deng, Wao-Hai, Tao & Run-Wen, Wang 1982 Plasma and Nucl. Fusion China, 1, 187.Google Scholar
Eliezer, S. & Ludminsky, A. 1983 Laser and Particle Beams, 1, 251.CrossRefGoogle Scholar
Gazit, Y., Delettrez, J., Bristow, T. C., Entenberg, A. & Soures, J. 1979 Phys. Rev. Lett. 43, 1943.CrossRefGoogle Scholar
Glass, A. J. 1983 (priv. comm. Febr. based on a discussion of ref. Cicchitelli et al. 1982).Google Scholar
Hofstadter, R. 1979 IAEA Meeting, Osada, Advances in Inertial Confinement Fusion, Yamanaka, C. ed. (ILE, Osaka) p. 180.Google Scholar
Hora, H. 1969 Phys. Fluids, 12, 18.CrossRefGoogle Scholar
Hora, H. 1974 Phys. Fluids, 17, 939.CrossRefGoogle Scholar
Hora, H. 1975 Laser Plasmas and Nuclear Energy (Plenum, New York), p. 24.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley, New York).Google Scholar
Hora, H. 1983 Laser and Particle Beams, 1, 151.CrossRefGoogle Scholar
Hora, H., Castillo, R., Clark, R. G., Kane, E. L., Lawrence, V. F., Miller, R. D. C., Nicholson-Florence, M., Novak, M. M., Ray, P. S., Shepanski, J. R. & Isivinsky, A. I. 1979 Plasma Physics and Controlled Nuclear Fusion Research 1978 (IAED, Vienna), vol. 3, p. 237.Google Scholar
Hora, H., Lalousis, P. & Jones, D. A. 1983 Phys. Lett. 99A, 89.CrossRefGoogle Scholar
Hora, H. & Miley, G. H. 1984 Laser Focus, 20, (Febr.) 59.Google Scholar
Kidder, R. E. 1974 Nucl. Fusion, 14, 797.CrossRefGoogle Scholar
Knorr, G. & Goerz, C. K. 1974 Astrophys. Space Sci. 31, 209.CrossRefGoogle Scholar
Kulsrud, R. M. 1983 Phys. Today, 36 (No. 4) 56.Google Scholar
Kulsrud, R. M., Furth, H. P., Valeo, E. J. & Goldhaber, M. 1982 Phys. Rev. Lett. 49, 1248.CrossRefGoogle Scholar
Kuroda, H., Masuko, H. & Maerawa, S. 1978 Jap. J. Appl. Phys. 17, Suppl. 17–2, 484.CrossRefGoogle Scholar
Lalousis, P. 1983 Ph.D. Thesis, Univ. N.S.W.Google Scholar
Lalousis, P. & Hora, H. 1983 Laser and Particle Beams, 1, 283.CrossRefGoogle Scholar
Miley, G. H. 1981 Progress Report High-Energy Fusion-Product Energy-Loss Measurements, Fusion Studies Lab., Univ. Illinois, Dec.Google Scholar
Miley, G. H. & Hora, H. 1980 IEEE Transact. Plasma Sc. PS8, 468.CrossRefGoogle Scholar
More, R. M. 1983 Phys. Rev. Lett. 51, 396.CrossRefGoogle Scholar
Mulser, P. 1970 Z. Naturforsch. 25A, 282.CrossRefGoogle Scholar
Nakai, S. 1983 IAEA Cttee Meeting, Inertial conf. Fusion, Kobe, Nov.Google Scholar
Ray, P. S. & Hora, H. 1976 Nucl. Fusion, 16, 535.CrossRefGoogle Scholar
Rockett, P. D., Tarvin, J. A., Busch, G. E., Charatis, G., Johnson, R. R., Schroeder, R. J., Shepard, C. L., Simpson, J. D., Slater, D. C., Sullivan, D. & Bird, C. K. 1983 Europhys. Conf. Abstr. (Fusion, Aachen) 7D, Part II, 11.Google Scholar
Sato, N. & Okuda, H. 1980 Phys. Rev. Lett. 44, 470.CrossRefGoogle Scholar
Seifritz, W. & Goel, B. 1983 Atomkernenergie, October.Google Scholar
Stamper, J. A. & Tidman, D. A. 1973 Phys. Fluids, 16, 2024.CrossRefGoogle Scholar
Statt, B. W. & Berltnsky, A. J. 1980 Phys. Rev. Lett. 45, 2105.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1983 Nuclear Fusion, 23, 887.CrossRefGoogle Scholar
Wilson, G. V. H., Hora, H., Chaplin, D. H., Foster, H. R. & George, E. P. 1977 Laser Interaction and Related Plasma Phenomena, H. Schwarz et al. eds. (Plenum, New York), Vol. 4A, p. 267.CrossRefGoogle Scholar
Wolfenstein, L. 1949 Phys. Rev. 75, 1664.CrossRefGoogle Scholar
Yaakobi, B., Delettrez, J., McCrory, R. L., Marjortbanks, R., Richardson, M. C., Shvarts, D., Soures, J. M., Verdon, C., Villeneuve, D. M., Boehly, T., Hutchinson, R. & Letzring, S. 1984 Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G. H. eds. (Plenum, New York), Vol. 6, p. 731.CrossRefGoogle Scholar