Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-ttgcf Total loading time: 0.401 Render date: 2021-04-10T14:03:31.956Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Multi-terawatt femtosecond laser system of visible range based on a photochemical XeF(C-A) amplifier

Published online by Cambridge University Press:  27 November 2012

S.V. Alekseev
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
A.I. Aristov
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
N.G. Ivanov
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
B.M. Kovalchuk
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
V.F. Losev
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia Tomsk Polytechnic University, Tomsk, Russia
G.A. Mesyats
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
L.D. Mikheev
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
Yu.N. Panchenko
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
N.A. Ratakhin
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia Tomsk Polytechnic University, Tomsk, Russia
Corresponding
E-mail address:

Abstract

This paper reports on the creation of a THL-100 multi-terawatt hybrid laser system based on a Start-480M titanium-sapphire starting complex and photochemical XeF(C-A) amplifier with a 25-cm aperture. The complex produces 50-fs radiation pulses of energy up to 5 mJ at a second harmonic wavelength of 475 nm. The active medium of the amplifier is created in a XeF2/N2 mixture under vacuum-ultraviolet radiation of electron beam-excited xenon. The results of first experiments on femtosecond pulse amplification in the active medium of the XeF(C-A) amplifier are presented to demonstrate that a laser beam peak power of 14 TW has been attained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Begishev, I.A., Kalashnikov, M., Karpov, V., Nickles, P. & Schönnagel, H. (2004). Limitation of second-harmonic generation of femtosecond Ti:sapphire laser pulses. J. Opt. Soc. Am. 21, 318321.CrossRefGoogle Scholar
Clady, R., Coustillier, G., Gastaud, M., Sentis, M., Spiga, P., Tcheremiskine, V., Uteza, O., Mikheev, L.D., Mislavskii, V., Chambaret, J.P. & Chẻriaux, G. (2006). Archtitecture of a blue high contrast multiterawatt ultrashort laser. Appl. Phys. 82, 347358.CrossRefGoogle Scholar
Eckstrom, D.J. & Walker, H.C. (1982). Multijoul Performance of the Photolytically Pumped XeF(C-A) Laser. IEEE J. Quant. Eelectron. QE-18, 176181.CrossRefGoogle Scholar
Ginzburg, V.N., Lozhkarev, V.V., Mironov, S.Yu., Potemkin, A.K. & Khazanov, E.A. (2010). Influence of small-scale self-focusing on second harmonic generation in an intense laser field. Quant. Electron. 40, 503507.CrossRefGoogle Scholar
Hofmann, Thomas, Sharp, Tracy E., Dane, C. Brent, Wisoff, Peter J., Wilson, William L., Tittel, Frank K. & Szabo, Gabor. (1992). Characterization of an ultrahigh peak power XeF(C-A) excimer laser system. IEEE J. Quant. Electron. 40, 13661375.CrossRefGoogle Scholar
Ivanov, N., Losev, V., Kovalchuk, B., Mikheev, L., Mesyats, G., Ratakhin, N. & Yastremsky, A. (2009). Project of a 200-terawatt XeF(C-A) femtosecond pulse amplifier pumped by the VUV radiation from an e-beam driven converter. Int. Conf. of Ultrafast Optics – High Fields Short Wavelength, Acachon, France, 193195.Google Scholar
Losev, V., Alekseev, S., Ivanov, N., Kovalchuk, B., Mikheev, L., Mesyats, G., Panchenko, Yu., Ratakhin, N. & Yastremsky, A. (2010). Development of a hybrid (solid state/gas) femtosecond laser system of multiterawatt peak power. Proc. SPIE 7751, 912.Google Scholar
Losev, V., Alekseev, S., Ivanov, N., Kovalchuk, B., Mikheev, L., Mesyats, G., Panchenko, Yu., Puchikin, A., Ratakhin, N. & Yastremsky, A. (2011 a). Development of a 100-terawatt hybrid femtosecond laser system. Proc. SPIE 7993, 421425.Google Scholar
Losev, V., Alekseev, S., Ivanov, N., Kovalchuk, B., Mikheev, L., Mesyats, G., Panchenko, Yu., Puchikin, A., Ratakhin, N. & Yastremsky, A. (2011 b). Prospects of development of hybrid (solid state/gas) ultra-high power femtosecond laser system on the basis of XeF(C-A) amplifier. Opt. Precision Engineer. 19, 252259.CrossRefGoogle Scholar
Losev, V., Ivanov, N., Mikheev, L., Bojchenko, A., Tkachev, A. & Yakovlenko, S. (2006). Project of a 100-terawatt XeF(C-A) femtosecond pulse amplifier pumped by the VUV radiation from an e-beam driven converter. Proc. of the 2nd Int. Conf. on Ultrahigh Intensity Lasers, Cassis, France, 197199.Google Scholar
Mikheev, L., Kuznetsova, T., Sentis, M., Tcheremiskine, V. & Uteza, O. (2006). Prospects of the photochemically driven active media for Exawatt class fs systems. Proc. of the 2nd Int. Conf. on Ultrahigh Intensity Lasers, Cassis, France, 6466.Google Scholar
Mikheev, L.D. (1992). On the possibility of amplification of a femtosecond pulse up to the energy 1 kJ. Laser Part. Beams 10, 473478.CrossRefGoogle Scholar
Mironov, S., Lozhkarev, V., Ginzburg, V. & Khazanov, E. (2009). High-efficiency second-harmonic generation of superintense ultrashort laser pulses. Appl. Opt. 48, 20512055.CrossRefGoogle ScholarPubMed
Ozaki, T., Kieffer, J.-C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.CrossRefGoogle Scholar
Strickland, D. & Mourou, G.A. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Tcheremiskine, V., Uteza, O., Aristov, A., Sentis, M. & Mikheev, L. (2008). Photolytical XeF(C-A) laser amplifier of femtosecond optical pulses: gain measurements and pump efficiency. Appl. Phys. 91, 447454.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 6
Total number of PDF views: 25 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 10th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Multi-terawatt femtosecond laser system of visible range based on a photochemical XeF(C-A) amplifier
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Multi-terawatt femtosecond laser system of visible range based on a photochemical XeF(C-A) amplifier
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Multi-terawatt femtosecond laser system of visible range based on a photochemical XeF(C-A) amplifier
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *