Skip to main content Accessibility help
×
Home

Improvement of proton energy in high-intensity laser-nanobrush target interactions

Published online by Cambridge University Press:  17 April 2012

Jinqing Yu
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Weimin Zhou
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Xiaolin Jin
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
Lihua Cao
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China.
Zongqing Zhao
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Wei Hong
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Bin Li
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
Yuqiu Gu
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Corresponding
E-mail address:

Abstract

In order to improve the total laser-proton energy conversion efficiency, a nanobrush target is proposed for proton acceleration and investigated by two-dimensional particle-in-cell simulation. The simulation results show that the nanobrush target significantly enhances the energy and number of hot electrons through the target rear side. Compared with plain target, the sheath field on the rear surface is increased near 100% and the total laser-proton energy conversion efficiency is prompted more than 70%. Furthermore, the proton divergence angle is less than 30° by using nanobrush target. The proposed target may serve as a new method to increase the energy conversion efficiency from laser to protons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Andreev, A.A., Steinke, S., Sokollik, T., Schnurer, M., Ter Avetsiyan, S., Platonov, K.Y. & Nickles, P.V. (2009). Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity. Phys. Plasmas 16, 013103–9.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001–4.CrossRefGoogle ScholarPubMed
Cao, L.H., Gu, Y.Q., Zhao, Z.Q., Cao, L.F., Huang, W.Z., Zhou, W.M., Cai, H.B., He, X.T., Yu, W. & Yu, M.Y. (2010a). Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Phys. Plasmas 17, 103106–6.Google Scholar
Cao, L.H., Gu, Y.Q., Zhao, Z.Q., Cao, L.F., Huang, W.Z., Zhou, W.M., He, X.T., Yu, W. & Yu, M.Y. (2010b). Control of the hot electrons produced by laser interaction with nanolayered target. Phys. Plasmas 17, 043103–6.CrossRefGoogle Scholar
Deutsch, C. (2003). Transport of mega electron volt protons for fast ignition. Laser Part. Beams 21, 70–35.CrossRefGoogle Scholar
Ji, Y.L., Jiang, G.W., Wu, D., Wang, C.Y., Gu, Y.Q. & Tang, Y.J. (2010). Efficient generation and transportation of energetic electrons in a carbon nanotube array target. Appl. Phys. Lett. 96, 041504–3.CrossRefGoogle Scholar
Kahaly, Subhendu, Yadav, S.K., Wang, W.M., Sengupta, S., Sheng, Z.M., Das, A., Kaw, P.K. & Kumar, G.R. (2008). Near-complete absorption of intense, ultrashort laser light by sub-lambda gratings. Phys. Rev. Lett. 101, 145001–4.CrossRefGoogle ScholarPubMed
Klimo, O., Psikal, J., Limpouch, J., Proska, J., Novotny, F., Ceccotti, T., Floquet, V. & Kawata, S. (2011). Short pulse laser interaction with micro-structured targets: Simulations of laser absorption and ion acceleration. New J. Phys. 13, 053028–17.CrossRefGoogle Scholar
Kulcsár, G., AlMawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, , Zhao, M.L. & Marjoribanks, R.S. (2000). Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149–4.CrossRefGoogle ScholarPubMed
Li, C.K., Seguin, F.H., Frenje, J.A., Manuel, M., Casey, D., Sinenian, N., Petrasso, R.D., Amendt, P.A., Landen, O.L., Rygg, J.R., Town, R.P.J., Betti, R., Delettrez, J., Knauer, J.P., Marshall, F., Meyerhofer, D.D., Sangster, T.C., Shvarts, D., Smalyuk, V.A., Soures, J.M., Back, C.A., Kilkenny, J.D. & Nikroo, A. (2009). Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas. Phys. Plasmas 16, 056304–6.CrossRefGoogle Scholar
Li, X.M., Shen, B.F., Zhang, X.M., Jin, Z.Y. & Wang, F.C. (2008). The diagnostics of density distribution for inhomogeneous dense DT plasmas using fast protons. Laser Part. Beams 26, 139145.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002–4.CrossRefGoogle ScholarPubMed
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E. 72, 056401–5.CrossRefGoogle ScholarPubMed
Nodera, Y., Kawata, S., Onuma, N., Limpouch, J., Klimo, O. & Kikuchi, T. (2008). Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction. Phys. Rev. E. 78, 046401–6.CrossRefGoogle Scholar
Offermann, D.T., Freeman, R.R., Van Woerkom, L.D., Foord, M.E., Hey, D., Key, M.H., Mackinnon, A.J., MacPhee, A.G., Patel, P.K., Ping, Y., Sanchez, J.J., Shen, N., Bartal, T., Beg, F.N., Espada, L., Chen, C.D. (2009). Observations of proton beam enhancement due to erbium hydride on gold foil targets. Phys. Plasmas 16, 093113–7.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Willi, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Zhao, Z.Q., Cao, L.H., Cao, L.F., Wang, J., Huang, W.Z., Jiang, W., He, Y.L., Wu, Y.C., Zhu, B., Dong, K.G., Ding, Y.K., Zhang, B.H., Gu, Y.Q., Yu, M.Y. & He, X.T. (2010). Acceleration and guiding of fast electrons by a nanobrush target. Phys. Plasmas 17, 123108.CrossRefGoogle Scholar
Zhou, W.M., Gu, Y.Q., Hong, W., Zhao, Z.Q., Ding, Y.K., Zhang, B.H., Cai, H.B. & Mima, K. (2010). Enhancement of monoenergetic proton beams via cone substrate in high intensity laser pulse-double layer target interactions. Laser Part. Beams 28, 585590.CrossRefGoogle Scholar
Zhou, W.M., Mima, K., Nakamura, T. & Nagatomo, H. (2008). Probing of nonlinear evolution of laser Wakefield by Raman scattering of laser light. Phys. Plasmas 15, 093107–6.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 9
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-xbf5p Total loading time: 0.334 Render date: 2021-01-17T14:01:38.188Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 13:53:09 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Improvement of proton energy in high-intensity laser-nanobrush target interactions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Improvement of proton energy in high-intensity laser-nanobrush target interactions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Improvement of proton energy in high-intensity laser-nanobrush target interactions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *