Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-04T15:58:32.103Z Has data issue: false hasContentIssue false

Unusual temporal niche overlap in a phytophagous bat ensemble of western Cuba

Published online by Cambridge University Press:  08 November 2013

Carlos A. Mancina
Affiliation:
Departamento de Zoología, Instituto de Ecología y Sistemática, Carretera de Varona km 3.5, Capdevila, Boyeros, Ciudad de la Habana, 10800, Cuba
Ivan Castro-Arellano*
Affiliation:
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
*
1Corresponding author. Email: ic13@txstate.edu

Abstract:

We assessed the differences and similarities in diel activities among five phytophagous bat species at two habitats over two seasons within the Sierra del Rosario Biosphere Reserve in Cuba. We characterized temporal patterns of activity and overlap of temporal activity for frugivore and nectarivore bat species (Artibeus jamaicensis, Monophyllus redmani, Phyllonycteris poeyi, Phyllops falcatus and Brachyphylla nana) that occur in tropical evergreen forest sites with distinct altitude and vegetation structure during wet and dry seasons. Capture frequencies using mist-nets of 1180 capture events were the empirical basis for analyses. For each species we compared activity patterns between habitats, between seasons, between males and females, as well as between reproductive and non-reproductive females. We also assessed temporal overlap among each possible pair of species at each habitat and used Monte Carlo simulations to evaluate assemblage-wide temporal niche overlap using a new algorithm, termed Rosario, designed specifically for temporal data. The two habitats had the same species composition and bat diel rhythms tended to be consistent across habitats, seasons and sexes for most bat species. In general bat species pairwise temporal niche overlap was high, and the ensemble-wide temporal overlap was consistently high across habitats and seasons indicating a common constraint for bat activities. Activity peaks of most bat species coincided at 4–5 h after sunset, this being in sharp contrast to other Neotropical bat assemblages at continental sites where activity peaks usually overlap within the first 2 h after sunset. This strong disparity in timing of activity peaks between continental and insular bat assemblages can provide the framework for the generation of hypotheses that explain the potential role of time as a mediator of ecological interactions in bat assemblages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGUIAR, L. M. D. S. & MARINHO-FILHO, J. 2004. Activity patterns of nine phyllostomid bat species in a fragment of the Atlantic Forest in southeastern Brazil. Revista Brasileira de Zoologia 21:385390.CrossRefGoogle Scholar
AGUIAR, C. M. L., SANTOS, G. M. M., MARTINS, C. F. & PRESLEY, S. J. 2012. Trophic niche breadth and niche overlap in a guild of flower-visiting bees in a Brazilian dry forest. Apidologie 44:153162.CrossRefGoogle Scholar
ARRIAGA-FLORES, J. C., CASTRO-ARELLANO, I., MORENO-VALDEZ, A. & CORREA-SANDOVAL, A. 2012. Temporal niche overlap of a riparian forest bat ensemble in subtropical Mexico. Revista Mexicana de Mastozoología nueva época 2:620.Google Scholar
BERNARD, E. 2002. Diet, activity and reproduction of bat species (Mammalia, Chiroptera) in Central Amazonia, Brazil. Revista Brasileira de Zoologia 19:173188.CrossRefGoogle Scholar
BRITO, A. F., PRESLEY, S. J. & SANTOS, G. M. M. 2012. Temporal and trophic niche overlap in a guild of flower-visiting ants in a seasonal semi-arid tropical environment. Journal of Arid Environments 87:161167.CrossRefGoogle Scholar
BRUSEO, J. A. & BARRY, R. E. 1995. Temporal activity of syntopic Peromyscus in the central Appalachians. Journal of Mammalogy 76:7882.CrossRefGoogle Scholar
CAMERON, G. N., KINCAID, W. B. & CARNES, B. 1979. Experimental species removal: temporal activity patterns of Sigmodon hispidus and Reithrodontomys fulvescens. Journal of Mammalogy 60:195197.CrossRefGoogle Scholar
CASTRO-ARELLANO, I. & LACHER, T. E. 2009. Temporal niche segregation in two rodent assemblages of subtropical Mexico. Journal of Tropical Ecology 25:593603.CrossRefGoogle Scholar
CASTRO-ARELLANO, I., PRESLEY, S. J., WILLIG, M. R., WUNDERLE, J. M. & SALDANHA, L. N. 2009. Reduced-impact logging and temporal activity of understorey bats in lowland Amazonia. Biological Conservation 142:21312139.CrossRefGoogle Scholar
CASTRO-ARELLANO, I., LACHER, T. E., WILLIG, M. R. & RANGEL, T. F. 2010. Assessment of assemblage-wide temporal niche segregation using null models. Methods in Ecology and Evolution 1:311318.CrossRefGoogle Scholar
CHARLES-DOMINIQUE, P. 1986. Inter-relations between frugivorous vertebrates and pioneer plants: Cecropia, birds and bats in French Guyana. 119135 in Estrada, A. & Fleming, T. H. (eds.). Frugivores and seed dispersal. Dr W. Junk Publishers, Dordrecht.CrossRefGoogle Scholar
CHARLES-DOMINIQUE, P. 1991. Feeding strategy and activity budget of the frugivorous bat Carollia perspicillata (Chiroptera: Phyllostomidae) in French Guiana. Journal of Tropical Ecology 7:243256.CrossRefGoogle Scholar
DÁVALOS, L. M. 2004. Phylogeny and biogeography of Caribbean mammals. Biological Journal of the Linnean Society 81:373394.CrossRefGoogle Scholar
DI BITETTI, M. S., DI BLANCO, Y. E., PEREIRA, J. A., PAVIOLO, A. & PEREZ, I. J. 2009. Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas foxes (Lycalopex gymnocercus). Journal of Mammalogy 90:479490.CrossRefGoogle Scholar
FAUTH, J. E., BERNARDO, J., CAMARA, M., RESETARITS, W. J., VAN BUSKIRK, J. & MCCOLLUM, S. A. 1996. Simplifying the jargon of community ecology: a conceptual approach. American Naturalist 147:282286.CrossRefGoogle Scholar
FEISINGER, P., SPEARS, E. E. & POOLE, R. W. 1981. A simple measure of niche breadth. Ecology 62:2732.CrossRefGoogle Scholar
GANNON, M. R. 1993. A new technique for marking bats. Bat Research News 34:8889.Google Scholar
GERBER, B. D., KARPANTY, S. M. & RANDRIANANTEAINA, J. 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. Journal of Mammalogy 93:667676.CrossRefGoogle Scholar
GLASS, G. E. & SLADE, N. A. 1980. The effect of Sigmodon hispidus on spatial and temporal activity of Microtus ochrogaster: evidence for competition. Ecology 61:358370.CrossRefGoogle Scholar
GOTELLI, N. J. & GRAVES, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.Google Scholar
GUTMAN, R. & DAYAN, T. 2005. Temporal partitioning: and experiment with two species of spiny mice. Ecology 86:164173.CrossRefGoogle Scholar
HALLE, S. & STENSETH, N. C. 2000. Activity patterns in small mammals, an ecological approach. Springer-Verlag, Berlin. 320 pp.CrossRefGoogle Scholar
HERRERA, R. A., MENÉNDEZ, L., RODRÍGUEZ, M. E. & GARCÍA, E. E. 1988. Ecología de los bosques siempreverdes de la Sierra del Rosario. Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y el Caribe, ROSTLAC, Montevideo, Uruguay. 760 pp.Google Scholar
HULBERT, S. H. & LOMBARDI, C. M. 2003. Design and analysis: uncertain intent, uncertain result. Ecology 84:810812.CrossRefGoogle Scholar
JONES, M. E., MANDELIK, Y. & DAYAN, T. 2001. Coexistence of temporally partitioning spiny mice: roles of habitat structure and foraging behavior. Ecology 82:21642176.CrossRefGoogle Scholar
JONES, G., JACOBS, D. S., KUNZ, T. H., WILLIG, M. R. & RACEY, P. A. 2009. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research 8:93115.CrossRefGoogle Scholar
KOTLER, B. P., BROWN, J. S. & SUBACH, A. 1993. Mechanisms of species coexistence of optimal foragers: temporal partitioning by two species of sand dune gerbils. Oikos 67:548556.CrossRefGoogle Scholar
KRONFELD-SCHOR, N. & DAYAN, T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution and Systematics 34:153181.CrossRefGoogle Scholar
KRONFELD-SCHOR, N., DAYAN, T., ELVERT, R., HAIM, A., ZISAPEL, N. & HELDMAIER, G. 2001. On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint. American Naturalist 158:451457.CrossRefGoogle ScholarPubMed
LAVAL, R. K. 1970. Banding and activity periods of some Costa Rican bats. Southwestern Naturalist 15:110.Google Scholar
MANCINA, C. A. 2010. Ecología trófica y balance de agua en murciélagos nectarívoros cubanos. Ph. D. dissertation, Instituto de Ecología y Sistemática, La Habana, Cuba. 125 pp.Google Scholar
MANCINA, C. A. & HERRERA, L. G. 2010. Disparate feeding strategies used by syntopic Antillean nectarivorous bats to obtain dietary protein. Journal of Mammalogy 91:960966.CrossRefGoogle Scholar
MANCINA, C. A., GARCÍA, L. & CAPOTE, R. 2007. Habitat use by phyllostomid bat assemblages in secondary forests of the “Sierra del Rosario” Biosphere Reserve, Cuba. Acta Chiropterologica 9:203218.CrossRefGoogle Scholar
MANCINA, C. A., GARCÍA, L. & MILLER, B. W. 2012. Wing morphology, echolocation, and resource partitioning in syntopic Cuban mormoopid bats. Journal of Mammalogy 93:13081317.CrossRefGoogle Scholar
MARINHO-FILHO, J. S. & SAZIMA, I. 1989. Activity patterns of six phyllostomid bat species in southeastern Brazil. Revista Brasileira de Zoologia 49:777782.Google Scholar
MCNAB, B. K. 2002. Minimizing energy expenditure facilitates vertebrate persistence on oceanic islands. Ecology Letters 5:693704.CrossRefGoogle Scholar
MEYER, C. F. J., AGUIAR, L. M. S., AGUIRRE, L. F., BAUMGARTEN, J., CLARKE, F. M., COSSON, J-F., VILLEGAS, S. E., FAHR, J., FARIA, D., FUREY, N., HENRY, M., HODGKISON, R., JENKINS, R. K. B., JUNG, K. G., KINGSTON, T., KUNZ, T. H., MACSWINEY GONZALEZ, C. M., MOYA, I., PATTERSON, B. D., PONS, J.-M., RACEY, P. A., REX, K., SAMPAIO, E. M., SOLARI, S., STONER, K. E., VOIGT, C. C., VON STADEN, D., WEISE, C. D. & KALKO, E. K. V. 2011. Accounting for detectability improves estimates of species richness in tropical bat surveys. Journal of Applied Ecology 48:777787.CrossRefGoogle Scholar
MORAN, M. D. 2003. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403405.CrossRefGoogle Scholar
NORRIS, D., MICHALSKI, F. & PERES, C. A. 2010. Habitat patch size modulates terrestrial mammal activity patterns in Amazonian forest fragments. Journal of Mammalogy 91:551560.CrossRefGoogle Scholar
ORTEGA, J. & CASTRO-ARELLANO, I. 2001. Artibeus jamaicensis. Mammalian Species 661:19.Google Scholar
PATTERSON, B. D., PACHECO, V. & SOLARI, S. 1996. Distributions of bats along an elevational gradient in the Andes of south-eastern Peru. Journal of Zoology 240:637658.CrossRefGoogle Scholar
PIANKA, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4:5374.CrossRefGoogle Scholar
PRESLEY, S. J., WILLIG, M. R., CASTRO-ARELLANO, I. & WEAVER, S. C. 2009a. Effects of habitat conversion on temporal activity patterns of phyllostomid bats in lowland Amazonian rainforest. Journal of Mammalogy 90:210221.CrossRefGoogle Scholar
PRESLEY, S. J., WILLIG, M. R., SALDANHA, L. N., WUNDERLE, J. M. & CASTRO-ARELLANO, I. 2009b. Reduced-impact logging has little effect on temporal activity of frugivorous bats (Chiroptera) in lowland Amazonia. Biotropica 41:369378.CrossRefGoogle Scholar
PROCHASKA, M. L. & SLADE, N. A. 1981. The effect of Sigmodon hispidus on summer diel activity of Microtus ochrogaster in Kansas. Transactions of the Kansas Academy of Sciences 84:134138.CrossRefGoogle Scholar
RACEY, P. A. 1988. Reproductive assessment in bats. 3146 in Kunz, T. H. (ed.). Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington, DC.Google Scholar
ROBACK, P. J. & ASKINS, R. A. 2005. Judicious use of multiple hypothesis tests. Conservation Biology 19:261267.CrossRefGoogle Scholar
RODRÍGUEZ-DURÁN, A. 2009. Bat assemblages in the West Indies: the role of caves. 265280 in Fleming, T. H. & Racey, P. A. (eds.). Island bats. University of Chicago Press, Chicago.Google Scholar
SCHOENER, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.CrossRefGoogle ScholarPubMed
SIEGEL, S. & CASTELLAN, N. J. 1995. Estadistica no paramétrica: aplicada a las ciencias de la conducta. (Fourth edition). Editorial Trillas, Mexico City. 437 pp.Google Scholar
SIKES, R. S., GANNON, M. R. & THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92:235253.CrossRefGoogle Scholar
SILVA, T. G. 1979. Los murciélagos de Cuba. Editorial Academia, La Habana. 423 pp.Google Scholar
WINEMILLER, K. O. & PIANKA, E. R. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs 60:2755.CrossRefGoogle Scholar