Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T06:29:18.810Z Has data issue: false hasContentIssue false

Tree species distribution in Andean forests: influence of regional and local factors

Published online by Cambridge University Press:  08 December 2011

Cecilia Blundo*
Affiliation:
Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán, Argentina Fundación ProYungas, Tucumán, Argentina
Lucio R. Malizia
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Argentina Fundación ProYungas, Tucumán, Argentina
John G. Blake
Affiliation:
Department of Wildlife Ecology and Conservation, University of Florida, USA
Alejandro D. Brown
Affiliation:
Fundación ProYungas, Tucumán, Argentina
*
1Corresponding author. Email: ccblundo@yahoo.com.ar

Abstract:

We identified and quantified regional and local environmental factors and spatial variation associated with tree-species composition across a 2000-m altitudinal gradient of Andean forest in north-western Argentina. A network of 47 1-ha plots was established along the altitudinal gradient within an area of about 25 000 km2; all trees ≥ 10 cm dbh were identified and measured. Constrained ordinations and variance-partitioning analyses were performed to investigate the determinants of tree-species distribution at the regional scale, across and within forest types (i.e. dry and cloud forests). We marked and measured a total of 22 240 trees belonging to 160 species. Significant environmental factors and spatial location combined accounted for 35% of total variation explained. A high proportion of variation was explained by climatic factors that were spatially structured; after removing the spatial effect, climate explained more variation in species composition across the complete gradient than did local factors. Relative importance of regional and local factors varied with geographic extent. Local factors explained more variation in tree-species composition at the within-forest scale than at the scale of the complete gradient. Our findings support the conceptual model of multi-scale controls on vegetation distribution, where local community composition and abundance result from processes at both regional and local scales.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDERSON, M. J. & GRIBBLE, N. A. 1998. Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Australian Journal of Ecology 23:158167.Google Scholar
ARAGÓN, R. & MORALES, J. M. 2003. Species composition and invasion in NW Argentinean secondary forests: effects of land use history, environment and landscape. Journal of Vegetation Science 14:195204.CrossRefGoogle Scholar
ARIAS, M. & BIANCHI, A. 1996. Estadísticas climatológicas de la Provincia de Salta. INTA, Salta. 189 pp.Google Scholar
ASHTON, P. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology, Evolution and Systematics 6:87104.CrossRefGoogle Scholar
BARUCH, Z. 1984. Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan páramos. Plant Ecology 55:115126.Google Scholar
BHATTARAI, K. R. & VETAAS, O. R. 2003. Species richness on a subtropical elevation gradient in Nepal. Global Ecology and Biogeography 12:327340.Google Scholar
BIANCHI, A. & YÁÑEZ, C. 1992. Las precipitaciones en el noroeste de Argentina. (Second edition). INTA, Salta. 388 pp.Google Scholar
BIANCHI, A., ELENA, H. & VOLANTE, S. 2008. SIG climático del NOA. CD-ROM. INTA, Salta.Google Scholar
BORCARD, D., LEGENDRE, P. & DRAPEAU, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73:10451055.CrossRefGoogle Scholar
BROWN, A. D. & RAMADORI, E. D. 1989. Patrón de distribución, diversidad y características ecológicas de las especies arbóreas de las selvas y bosques montanos del N.O. de la Argentina. Pp. 177181 in Actas VI Congreso Forestal Argentino. UNT, Tucumán.Google Scholar
BROWN, A. D., CHALUKIAN, S. & MALMIERCA, L. 1985. Estudio florístico estructural de un sector de la selva semidecidua del Noroeste argentino. I. Composición florística, densidad y diversidad. Darwiniana 26:2741.Google Scholar
BROWN, A. D., GRAU, H. R., MALIZIA, L. R. & GRAU, A. 2001. Argentina. Pp. 623659 in Kappelle, M. & Brown, A. D. (eds.). Bosques nublados del Neotrópico. Instituto Nacional de Biodiversidad, San José.Google Scholar
CABRERA, A. 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Editorial Acme, Buenos Aires. 85 pp.Google Scholar
CABRERA, A. & WILLINK, A. 1980. Biogeografía de América Latina. (Second edition). OEA, Washington, DC. 122 pp.Google Scholar
CARPENTER, C. 2005. The environmental control of plant species density on Himalayan elevation gradient. Journal of Biogeography 32:9991018.Google Scholar
CLARK, D., PALMER, M. & CLARK, D. 1999. Edaphic factors and the landscape-scale distribution of tropical rain forest trees. Ecology 80:26622675.Google Scholar
CONDIT, R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer-Verlag, Berlin. 211 pp.Google Scholar
CONDIT, R., PITMAN, N. C. A., LEIGH, E. G., CHAVE, J., TERBORGH, J. W., FOSTER, R. B., NUÑEZ VARGAS, P., AGUILAR, S., VALENCIA, R., VILLA MUÑOZ, G., MULLER-LANDAU, H. C., LOSOS, E. C. & HUBBELL, S. P. 2002. Beta-diversity in tropical forest trees. Science 295:666669.Google Scholar
DEMAIO, P., KARLIN, U. O. & MEDINA, M. 2002. Árboles nativos del Centro de Argentina. L.O.L.A. Buenos Aires. 210 pp.Google Scholar
DIGILIO, A. & LEGNAME, P. 1966. Los árboles indígenas de la Provincia de Tucumán. Opera Lilloana 15:1107.Google Scholar
DUIVENVOORDEN, J. F., SVENNING, J. C. & WRIGHT, S. 2002. Beta diversity in tropical forests. Science 295:636637.Google Scholar
GENTRY, A. 1988. Changes in plant community diversity and floristic composition on environmental and geographic gradients. Annals of the Missouri Botanical Garden 75:134.Google Scholar
GILBERT, B. & LECHOWICZ, M. J. 2004. Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, USA 101;76517656.CrossRefGoogle Scholar
GIVNISH, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87:193210.Google Scholar
GRAU, H. 2002. Scale-dependent relationships between treefalls and species richness in a neotropical montane forest. Ecology 83:25912601.Google Scholar
GRAU, H. R., ARTURI, M., BROWN, A. D. & ACEÑOLAZA, P. 1997. Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forests. Forest Ecology and Management 95:161171.CrossRefGoogle Scholar
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.Google Scholar
HUNZINGER, H. 1997. Hydrology of montane forests in the Sierra de San Javier, Tucumán, Argentina. Mountain Research and Development 17:299308.CrossRefGoogle Scholar
KAPPELLE, M. & BROWN, A. D. 2001. Bosques nublados del neotrópico. Instituto Nacional de Biodiversidad, San José. 698 pp.Google Scholar
KESSLER, M. 2002. The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29:11591165.Google Scholar
KILLEEN, T., GARCIA, E. & BECK, S. 1993. Guía de árboles de Bolivia. Herbario Nacional de Bolivia, La Paz. 958 pp.Google Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.Google Scholar
LEGNAME, P. 1982. Árboles indígenas del noroeste argentino. Opera Lilloana 34:1226.Google Scholar
LEPŠ, S. & ŠMILAUER, P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge. 269 pp.CrossRefGoogle Scholar
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84:137152.Google Scholar
LOBO, J., CASTRO, I. & MORENO, J. 2001. Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biological Journal of the Linnean Society 73:233253.Google Scholar
LOMOLINO, M. V. 2001. Elevation gradients of species-richness, historical and prospective views. Global Ecology and Biogeography 10:313.CrossRefGoogle Scholar
LÓPEZ, W. & DUQUE, A. 2010. Patrones de diversidad alfa en tres fragmentos de bosques montanos en la región nortes de los Andes, Colombia. Revista de Biología Tropical 58:483498.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.Google Scholar
MORALES, J. M., SIROMBRA, M. & BROWN, A. D. 1995. Riqueza de árboles en las Yungas argentinas. Pp. 157162 in Brown, A. D. & Grau, H. R. (eds.). Investigación, conservación y desarrollo en selvas subtropicales de montaña. LIEY, Tucumán.Google Scholar
NEILSON, R. P., KING, G. A., DEVELICE, R. L. & LENIHAN, J. M. 1992. Regional and local vegetation patterns: the responses of vegetation diversity to sub-continental air masses. Pp. 129149 in Hansen, A. J. & di Castri, F. (eds.). Landscape boundaries: consequences of biotic diversity and ecological flows. Springer-Verlag, New York.Google Scholar
OHMANN, J. & SPIES, T. 1998. Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecological Monographs 68:151182.Google Scholar
OLIVEIRA-FILHO, A. & FONTES, M. 2000. Patterns of floristic differentiation among Atlantic Forests in southeastern Brazil and the influence of climate. Biotropica 32:793810.Google Scholar
PETERSON, E. B. & McCUNE, B. 2001. Diversity and succession of epiphytic macrolichen communities in low-elevation managed conifer forests in western Oregon. Journal of Vegetation Science 12:511524.Google Scholar
PHILLIPS, O. L., NÚÑEZ VARGAS, P., CHUSPE ZANS, M. E., GALIANO SÁNCHEZ, W., YLI-HALLA, M. & ROSE, S. 2003. Habitat association among Amazonian tree species: a landscape-scale approach. Journal of Ecology 91:757775.Google Scholar
PYKE, C., CONDIT, R., AGUILAR, S. & LAO, S. 2001. Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science 12:553566.CrossRefGoogle Scholar
RAMADORI, D. E. & BROWN, A. D. 1997. Agricultura migratoria y sucesión secundaria en bosques nublados del noroeste de Argentina. Pp. 113127 in Lieberman, M. & Baied, C. (eds.). Desarrollo sostenible en ecosistemas de montaña: Manejo de áreas frágiles en los Andes. Universidad de las Naciones Unidas, La Paz.Google Scholar
REBORATTI, C. E. 1995. Apropiación y uso de la tierra en las Yungas del Alto Bermejo. Pp. 199204 in Brown, D. A. & Grau, H. R. (eds.). Investigación, conservación y desarrollo en selvas subtropicales de montaña. LIEY, Tucumán.Google Scholar
RICKLEFS, R. 1987. Community diversity: relative roles of local and regional processes. Science 235:167171.CrossRefGoogle ScholarPubMed
RICKLEFS, R. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7:115.CrossRefGoogle Scholar
RICKLEFS, R. & SCHLUTER, D. 1993. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago. 414 pp.Google Scholar
RICKLEFS, R., QIAN, H. & WHITE, P. S. 2004. The region effect on mesoscale plant species richness between eastern Asia and eastern North America. Ecography 27:129136.CrossRefGoogle Scholar
SARMIENTO, G. 1972. Ecological and floristic convergences between seasonal plant formations of tropical and subtropical South America. Journal of Ecology 60:367410.Google Scholar
STEVENS, G. & FOX, J. 1991. The causes of tree line. Annual Review of Ecology and Systematics 22;177191.CrossRefGoogle Scholar
SVENNING, J. C. & SKOV, F. 2005. The relative roles of environment and history as controls of tree species composition and richness in Europe. Journal of Biogeography 32:10191033.Google Scholar
TER BRAAK, C. J. F. 1988. Partial canonical correspondence analysis. Pp. 551558 in Bock, H. (ed.). Classification and related methods of data analysis. North-Holland, Amsterdam.Google Scholar
TER BRAAK, C. J. F. 1990. Interpreting canonical correlation analysis through biplots of structural correlations and weights. Psychometrika 55:519531.Google Scholar
TER BRAAK, C. J. F. & ŠMILAUER, P. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca. 500 pp.Google Scholar
TOLEDO, M., POOTER, L., PEÑA-CLAROS, M., ALARCON, A., BALCÁZAR, J., LEAÑO, C., LICONA, J. C., LLANQUE, O., VROOMANS, V., ZUIDEMA, P. & BONGERS, F. 2010. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology 99:254264.CrossRefGoogle Scholar
TUOMISTO, H., POULSEN, A., RUOKOLAINEN, K., MORAN, R., QUINTANA, C., CELI, J. & CAÑAS, G. 2003. Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecological Applications 13:352371.Google Scholar
VAZQUEZ, J. A. & GIVNISH, T. J. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. Journal of Ecology 86:9991020.Google Scholar
WHITTAKER, R. 1967. Gradient analysis of vegetation. Biological Reviews 43:207264.CrossRefGoogle Scholar
ZAMORA PETRI, M. 2006. Influencia de la ganadería trashumante y la apertura de claros en la supervivencia y el crecimiento de Cedrela lilloi en Tariquía, Bolivia. Pp. 131142 in Pacheco, S. & Brown, A. D. (eds.). Ecología y producción de cedro (género Cedrela) en las Yungas australes. Ediciones del Subtrópico, Tucumán.Google Scholar
ZUUR, A. F., IENO, E. N. & ELPHICK, C. S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:314.Google Scholar