Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T22:03:05.177Z Has data issue: false hasContentIssue false

Savanna fires govern community structure of ungulates in Bénoué National Park, Cameroon

Published online by Cambridge University Press:  01 January 2008

Erik Klop*
Affiliation:
Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
Janneke van Goethem
Affiliation:
Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
*
1Corresponding author, at Thorbeckestraat 160, 6702 BW Wageningen, The Netherlands. Email: eklop@cs.com

Abstract:

We studied the effects of savanna fires on the structure of local ungulate communities in a West African woodland savanna. The distribution of 11 ungulate species over 9−15 burned sites (the number of which increased as burning activity continued during the dry season) and 7−13 unburned sites was compared with a variety of null models or randomized ‘virtual communities’. Five different parameters of community structure were examined: body mass distribution, co-occurrence patterns, species richness, species density and guild dominance. Overall, ungulate species were not randomly distributed over burned and unburned sites. The regular spacing of body masses in the set of species recorded on burned and unburned sites indicated competition, since species similar in body mass are more likely to compete than species of different size. However, co-occurrence patterns on burned sites were random, indicating absence of competition at fine spatial scales due to differential habitat use within the burned landscape. Although the attractiveness of the regrowth on burned sites resulted in higher numbers of ungulates compared with unburned sites, species richness was not different. Grazers were the dominant guild on burned sites, but there were no differences in species richness or species density between grazers and browsers on unburned sites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALLEN, C. R., GARMESTANI, A. S., HAVLICEK, T. D., MARQUET, P. A., PETERSON, G. D., RESTREPO, C., STOW, C. A. & WEEKS, B. E. 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9:630643.CrossRefGoogle ScholarPubMed
ARCHIBALD, S. & BOND, W. J. 2004. Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna. International Journal of Wildland Fire 13:377385.CrossRefGoogle Scholar
ARCHIBALD, S., BOND, W. J., STOCK, W. D. & FAIRBANKS, D. H. K. 2004. Shaping the landscape: fire-grazer interactions in an African savanna. Ecological Applications 15:96109.CrossRefGoogle Scholar
ARSENAULT, R. & OWEN-SMITH, N. 2002. Facilitation versus competition in grazing herbivore assemblages. Oikos 97:313318.CrossRefGoogle Scholar
BOWERS, M. A. & BROWN, J. H. 1982. Body size and co-existence in desert rodents: chance or community structure? Ecology 63:391400.CrossRefGoogle Scholar
COLWELL, R. K., MAO, C. X. & CHANG, J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:27172727.CrossRefGoogle Scholar
CONNOR, E. H. & SIMBERLOFF, D. 1979. The assembly of species communities: chance or competition? Ecology 60:11321140.CrossRefGoogle Scholar
DE BIE, S. 1991. Wildlife resources of the West African Savanna. PhD thesis, Wageningen Agricultural University. 266 pp.Google Scholar
DIAMOND, J. 1975. Assembly of species communities. Pp. 342444 in Cody, M. L. & Diamond, J. M. (eds.). Ecology and evolution of communities. Harvard University Press, Cambridge.Google Scholar
EAST, R. 1984. Rainfall, soil nutrient status and biomass of large African savanna mammals. African Journal of Ecology 22:245270.CrossRefGoogle Scholar
FOX, B. J. 1982. Fire and mammalian secondary succession in an Australian coastal heath. Ecology 63:13321341.CrossRefGoogle Scholar
GILPIN, M. E. & DIAMOND, J. M. 1982. Factors contributing to non-randomness in species co-occurrences on islands. Oecologia 52:7584.CrossRefGoogle ScholarPubMed
GILPIN, M. E. & DIAMOND, J. M. 1984. Are species co-occurrences on islands non-random, and are null hypotheses useful in community ecology? Pp. 297315 in Strong, D. R., Simberloff, D., Abele, L. G. & Thistle, A. B. (eds.) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton.CrossRefGoogle Scholar
GORDON, I. J. & ILLIUS, A. W. 1989. Resource partitioning by ungulates on the Isle of Rhum. Oecologia 79:383389.CrossRefGoogle ScholarPubMed
GOTELLI, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:26062621.CrossRefGoogle Scholar
GOTELLI, N. J. & COLWELL, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.CrossRefGoogle Scholar
GOTELLI, N. J. & ELLISON, A. M. 2002. Assembly rules for New England ant assemblages. Oikos 99:591599.CrossRefGoogle Scholar
GOTELLI, N. J. & GRAVES, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington D.C. 368 pp.Google Scholar
GUREJA, N. & OWEN-SMITH, N. 2002. Comparative use of burnt grassland by rare antelope species in a lowveld ranch, South Africa. South African Journal of Wildlife Research 32:3138.Google Scholar
HASTINGS, A. 1987. Can competition be detected using species co-occurrence data? Ecology 68:117123.CrossRefGoogle Scholar
HOBBS, N. T., BAKER, D. L., BEAR, G. D. & BOWDEN, D. C. 1996. Ungulate grazing in sagebrush grassland: mechanisms of resource competition. Ecological Applications 6:200217.CrossRefGoogle Scholar
HOLLING, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62:447502.CrossRefGoogle Scholar
HORN, H. S. & MAY, R. M. 1977. Limits to similarity among coexisting competitors. Nature 270:660661.CrossRefGoogle Scholar
HUTCHINSON, G.E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
KINGDON, J. 1997. The Kingdon field guide to African mammals. Academic Press, San Diego. 464 pp.Google Scholar
KLOP, E., VAN GOETHEM, J. & DE IONGH, H. H. 2007. Resource selection by grazing herbivores on post-fire regrowth in a West African woodland savanna. Wildlife Research 34:7783.CrossRefGoogle Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical ecology. (Second edition). Elsevier, Amsterdam. 853 pp.Google Scholar
MACKENZIE, D. I., BAILEY, L. L. & NICHOLS, J. D. 2004. Investigating species co-occurrence patterns when species are detected imperfectly. Journal of Animal Ecology 73:546555.CrossRefGoogle Scholar
MAYAKA, T. B. 2002. Value Wildlife! An ecological and economic assessment of wildlife use in northern Cameroon. PhD thesis, Leiden University. 174 pp.Google Scholar
MOE, S. R. & WEGGE, P. 1997. The effects of cutting and burning of grass quality and axis deer (Axis axis) use of grassland in lowland Nepal. Journal of Tropical Ecology 13:279292.CrossRefGoogle Scholar
MOE, S. R., WEGGE, P. & KAPELA, E. B. 1990. The influence of man-made fires on large wild herbivores in Lake Burungi in northern Tanzania. African Journal of Ecology 28:3543.CrossRefGoogle Scholar
MURRAY, M. G. & ILLIUS, A. W. 2000. Vegetation modification and resource competition in grazing ungulates. Oikos 89:501508.CrossRefGoogle Scholar
OLFF, H., RITCHIE, M. E. & PRINS, H. H. T. 2002. Global environmental controls of diversity in large herbivores. Nature 415:901904.CrossRefGoogle ScholarPubMed
POOLE, R. W. & RATHCKE, B. J. 1979. Regularity, randomness, and aggregation in flowering phenologies. Science 203:470471.CrossRefGoogle ScholarPubMed
PRINS, H. H. T. & Olff, H. 1998. Species-richness of African grazer assemblages: towards a functional explanation. Pp. 449490 in Newbery, D. M., Prins, H. H. T. & Brown, N. (eds.). Dynamics of tropical communities. Blackwell Science, Oxford.Google Scholar
RATCHFORD, J. S., WITTMAN, S. E., JULES, E. S., ELLISON, A. M., GOTELLI, N. J. & SANDERS, N. J. 2005. The effects of fire, local environment and time on ant assemblages in fens and forests. Diversity and Distributions 11:487497.CrossRefGoogle Scholar
REDFERN, J. V., RYAN, S. J. & GETZ, W. M. 2006. Defining herbivore assemblages in the Kruger National Park: a correlative coherence approach. Oecologia 146:632640.CrossRefGoogle ScholarPubMed
RITCHIE, M. E. & OLFF, H. 1999. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400:557560.CrossRefGoogle ScholarPubMed
SANDERS, N. J., GOTELLI, N. J., HELLER, N. E. & GORDON, D. M. 2003. Community disassembly by an invasive species. Proceedings of the National Academy of Sciences, USA 100:24742477.CrossRefGoogle ScholarPubMed
SIMBERLOFF, D. 1972. Properties of the rarefaction diversity measurement. American Naturalist 106:414418.CrossRefGoogle Scholar
SIMBERLOFF, D. & BOECKLEN, W. 1981. Santa Rosalia reconsidered: size ratios and competition. Evolution 35:12061228.CrossRefGoogle ScholarPubMed
SINCLAIR, A. R. E. & ARCESE, P. (eds.) 1995. Serengeti II: dynamics, management, and conservation of an ecosystem. University of Chicago Press, Chicago. 665 pp.Google Scholar
SINCLAIR, A. R. E. & NORTON-GRIFFITHS, M. (eds.) 1979. Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago. 402 pp.Google Scholar
STARK, M. A. & HUDSON, R. J. 1985. Plant communities in Bénoué National Park, Cameroon: a cluster association analysis. African Journal of Ecology 23:2127.CrossRefGoogle Scholar
STONE, L. & ROBERTS, A. 1990. The checkerboard score and species distributions. Oecologia 85:7479.CrossRefGoogle ScholarPubMed
STONE, L., DAYAN, T. & SIMBERLOFF, D. 1996. Community-wide assembly patterns unmasked: the importance of species’ differing geographic ranges. American Naturalist 148:9971015.CrossRefGoogle Scholar
STONE, L., DAYAN, T. & SIMBERLOFF, D. 2000. On desert rodents, favored states, and unresolved issues: scaling up and down regional assemblages and local communities. American Naturalist 156:322328.CrossRefGoogle ScholarPubMed
TOMOR, B. M. & OWEN-SMITH, N. 2002. Comparative use of grass regrowth following burns by four ungulate species in Nylsvlei Nature Reserve, South Africa. African Journal of Ecology 40:201204.CrossRefGoogle Scholar
VERWEIJ, R. J. T., VERRELST, J., LOTH, P. E., HEITKÖNIG, I. M. A. & BRUNSTING, A. M. H. 2006. Grazing lawns contribute to the subsistence of mesoherbivores on dystrophic savannas. Oikos 114:108116.CrossRefGoogle Scholar
WALKER, B. H. 1981. Is succession a viable concept in African savanna ecosystems? Pp. 431447 in West, D. C., Shugart, H. H. & Botkin, D. B. (eds.) Forest succession. Springer-Verlag, Berlin.CrossRefGoogle Scholar
WEIHER, E. & KEDDY, P. (eds.) 1999. Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge. 418 pp.CrossRefGoogle Scholar
WILSEY, B. J. 1996. Variation in use of green flushes following burns among African ungulate species: the importance of body size. African Journal of Ecology 34:3238.CrossRefGoogle Scholar
WILSON, J. B. 1989. A null model of guild proportionality, applied to stratification of a New Zealand temperate rain forest. Oecologia 80:263267.CrossRefGoogle Scholar
WILSON, J. B. & WHITTAKER, R. J. 1995. Assembly rules demonstrated in a saltmarsh community. Journal of Ecology 83:801807.CrossRefGoogle Scholar