Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:20:55.841Z Has data issue: false hasContentIssue false

A protocol for sampling vascular epiphyte richness and abundance

Published online by Cambridge University Press:  01 March 2009

Jan H. D. Wolf*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
S. Robbert Gradstein
Affiliation:
Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Nalini M. Nadkarni
Affiliation:
The Evergreen State College, Olympia, Washington 98505, USA
*
1Corresponding author. Email: j.h.d.wolf@uva.nl

Abstract:

The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIKEN, L. S. & WEST, S. G. 1991. Multiple regression: testing and interpreting interactions. SAGE Publications, Newbury Park.211 pp.Google Scholar
ANNASELVAM, J. & PARTHASARATHY, N. 2001. Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. Biodiversity and Conservation 10:317329.CrossRefGoogle Scholar
BADER, M., VAN DUNNÉ, H. J. F. & STUIVER, H. J. 2000. Epiphyte distribution in a secondary cloud forest vegetation; a case study of the application of GIS in epiphyte ecology. Ecotropica 6:181195.Google Scholar
BARKER, M. G. & PINARD, M. A. 2001. Forest canopy research: sampling problems, and some solutions. Plant Ecology 153:2328.CrossRefGoogle Scholar
BARKMAN, J. J. 1958. On the ecology of cryptogamic epiphytes – with special reference to The Netherlands. Van Gorcum & Comp. N.V., Assen. 628 pp.Google Scholar
BARTAREAU, T. & SKULL, S. 1994. The effects of past fire regimes on the structural characteristics of coastal plain Melaleuca viridiflora Sol. ex Gaert. woodlands and the distribution patterns of epiphytes (Dendrobium canaliculatum R. Br., Dischidia nummularia R. Br.) in Northeastern Queensland. Biotropica 26:118123.CrossRefGoogle Scholar
BENAVIDES, A. M., DUQUE, A. J., DUIVENVOORDEN, J. F., VASCO, G. A. & CALLEJAS, R. 2005. A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity and Conservation 14:739758.CrossRefGoogle Scholar
BENAVIDES, A. M., WOLF, J. H. D. & DUIVENVOORDEN, J. F. 2006. Recovery and succession of epiphytes in upper Amazonian fallows. Journal of Tropical Ecology 22:705717.CrossRefGoogle Scholar
BENNETT, B. C. 1986. Patchiness, diversity, and abundance relationships of vascular epiphytes. Selbyana 9:7075.Google Scholar
BERGSTROM, D. M. & TWEEDIE, C. E. 1998. A conceptual model for integrative studies of epiphytes: nitrogen utilisation, a case study. Australian Journal of Botany 46:273280.CrossRefGoogle Scholar
BORCARD, D. & LEGENDRE, P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153:5168.CrossRefGoogle Scholar
BORCARD, D., LEGENDRE, P. & DRAPEAU, P. 1992. Partialling out the spatial component of ecological variation.Ecology 73:10451055.CrossRefGoogle Scholar
BORCARD, D., LEGENDRE, P., AVOIS-JACQUET, C. & TUOMISTO, H. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:18261832.CrossRefGoogle Scholar
BURNS, K. C. & DAWSON, J. 2005. Patterns in the diversity and distribution of epiphytes and vines in a New Zealand forest. Austral Ecology 30:891899.CrossRefGoogle Scholar
CASCANTE-MARÍN, A. 2006. Establishment, reproduction and genetics of epiphytic bromeliad communities in successional premontane forests, Costa Rica. Ph.D. dissertation, University of Amsterdam, Amsterdam.Google Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B., DEN NIJS, J. C. M., SANAHUJA, O. & DURÁN-APUY, A. 2006. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic and Applied Ecology 7:520532.CrossRefGoogle Scholar
CATLING, P. M., BROWNELL, V. R. & LEFKOVITCH, L. P. 1986. Epiphytic orchids in a Belizean grapefruit orchard: distribution, colonization and association. Lindleyana 1:194202.Google Scholar
CHAO, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11:265270.Google Scholar
CLARK, P. J. & EVANS, F. C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445453.CrossRefGoogle Scholar
COLWELL, R. K. & CODDINGTON, J. K. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B) 345:101118.Google ScholarPubMed
COTTAM, G. & CURTIS, J. T. 1956. The use of distance measures in phytosociological sampling. Ecology 37:451460.CrossRefGoogle Scholar
D'ALONZO, K. T. 2004. The Johnson–Neyman procedure as an alternative to ANCOVA. Western Journal of Nursing Research 26:804812.CrossRefGoogle ScholarPubMed
DIAL, R. & TOBIN, S. C. 1994. Description of arborist methods for forest canopy access and movement. Selbyana 15:2437.Google Scholar
DRAY, S., LEGENDRE, P. & PERES-NETO, P. R. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196:483493.CrossRefGoogle Scholar
DUNN, R. R. 2000. Bromeliad communities in isolated trees and three successional stages of an Andean cloud forest in Ecuador. Selbyana 21:137143.Google Scholar
FLORES-PALACIOS, A. & GARCIA-FRANCO, J. G. 2006. The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography 33:323330.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. H. 1987a. Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149156.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. H. 1987b. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
GONZÁLEZ-ESPINOSA, M., QUINTANA-ASCENCIO, P. F., RAMÍREZ-MARCIAL, N. & GAYATÁN-GUZMÁN, P. 1991. Secondary succession in disturbed Pinus-Quercus forests in the highlands of Chiapas, Mexico. Journal of Vegetation Science 2:351360.CrossRefGoogle Scholar
GOTTSBERGER, G. & DÖRING, J. 1995. ‘COPAS’. An innovative technology for long-term studies of tropical rain forest canopies. Phyton (Horn, Austria) 35:165173.Google Scholar
GRADSTEIN, S. R., HIETZ, P., LÜCKING, R., LÜCKING, A., SIPMAN, H. J. M., VESTER, H. F. M., WOLF, J. H. D. & GARDETTE, E. 1996. How to sample the epiphytic diversity of tropical rain forests. Ecotropica 2:5972.Google Scholar
GRADSTEIN, S. R., NADKARNI, N. M., KRÖMER, T., HOLZ, I. & NÖSKE, N. 2003. A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana 24:105111.Google Scholar
HIETZ, P. 2005. Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology 19:391399.CrossRefGoogle Scholar
HIETZ, P. & HIETZ-SEIFERT, U. 1995. Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. Journal of Vegetation Science 6:719728.CrossRefGoogle Scholar
HIETZ-SEIFERT, U., HIETZ, P. & GUEVARA, S. 1996. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biological Conservation 75:103111.CrossRefGoogle Scholar
HOLZ, I. & GRADSTEIN, S. R. 2005. Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica – species richness, community composition and ecology. Plant Ecology 178:89109.CrossRefGoogle Scholar
HSU, C. C., HORNG, F. W. & KUO, C. M. 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology 18:659670.CrossRefGoogle Scholar
HUITEMA, B. E. 1980. The analysis of covariance and alternatives. Wiley, New York. 460 pp.Google Scholar
JOHANSSON, D. 1974. Ecology of vascular epiphytes in west African rain forest. Acta Phytogeographica Suecica 59:1123.Google Scholar
JOHNSON, P. O. & NEYMAN, J. 1936. Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs 1:5793.Google Scholar
JONGMAN, R. H. G., TER BRAAK, C. J. F. & VAN TONGEREN, O. F. R. 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen. 299 pp.Google Scholar
KEPPEL, G. 1991. Design and analysis: a researcher's handbook. Prentice Hall, Englewood Cliffs. 672 pp.Google Scholar
LAMAN, T. G. 1995. Safety recommendations for climbing rain forest trees with single rope technique. Biotropica 27:406409.CrossRefGoogle Scholar
LAUBE, S. & ZOTZ, G. 2006. Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Annals of Botany 97:11031114.CrossRefGoogle Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical ecology. Elsevier Science B.V., Amsterdam. 853 pp.Google Scholar
MADISON, M. 1979. Distribution of epiphytes in a rubber plantation in Sarawak. Selbyana 5:107115.Google Scholar
MAGURRAN, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton. 179 pp.CrossRefGoogle Scholar
MCCUNE, B. 1990. Rapid estimation of abundance of epiphytes on branches. The Bryologist 93:3943.CrossRefGoogle Scholar
MITCHELL, A. W., SECOY, K. & JACKSON, T. 2002. The Global Canopy handbook. Techniques of access and study in the forest roof. Global Canopy Programme, Oxford. 248 pp.Google Scholar
MOFFETT, M. W. 1993. The high frontier: exploring the tropical rain forest canopy. Harvard University Press, Cambridge. 192 pp.Google Scholar
MUIR, P. S., NORMAN, K. N. & SIKES, K. G. 2006. Quantity and value of commercial moss harvest from forests of the Pacific Northwest and Appalachian regions of the U.S. Bryologist 109:197214.CrossRefGoogle Scholar
NADKARNI, N. M. & PARKER, G. G. 1994. A profile of forest canopy science and scientists – who we are, what we want to know, and obstacles we face: results of an international survey. Selbyana 15:3850.Google Scholar
NIEDER, J. & ZOTZ, G. 1998. Methods of analyzing the structure and dynamics of vascular epiphyte communities. Ecotropica 4:3339.Google Scholar
NIEDER, J., ENGWALD, S., KLAWUN, M. & BARTHLOTT, W. 2000. Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni crane plot) of southern Venezuela. Biotropica 32:385396.CrossRefGoogle Scholar
OCHSNER, F. 1935. Oekologische Untersuchungen an Epiphytenstandorten. Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich 60:6980.Google Scholar
PARKER, G. G., SMITH, A. P. & HOGAN, K. P. 1992. Access to the upper forest canopy with a large tower crane: sampling the treetops in three dimensions. BioScience 42:664671.CrossRefGoogle Scholar
PERRY, D. R. 1978. A method of access into the crowns of emergent and canopy trees. Biotropica 10:155157.CrossRefGoogle Scholar
REICHARD, J. S. 2002. A computer program for use with pace and compass exercises. Journal of Geoscience Education 50:544548.CrossRefGoogle Scholar
SANFORD, W. W. 1968. Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology 56:697705.CrossRefGoogle Scholar
SCHIMPER, A. F. W. 1888. Die epiphytische Vegetation Amerikas. Botanische Mittheilungen aus den Tropen, Heft 2. Gustav Fischer, Jena. 162 pp.CrossRefGoogle Scholar
SCHULTEA, R. P. O., EGBERT, A., LANTING, A. B. & HAWKINS, M. J. 2005. A new family of Fisher-curves estimates Fisher's alpha more accurately. Journal of Theoretical Biology 232:305313.CrossRefGoogle Scholar
SOKAL, R. R. & ROHLF, F. J. 1981. Biometry. W.H. Freeman and Company, London.Google Scholar
TER BRAAK, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:11671179.CrossRefGoogle Scholar
TER BRAAK, C. J. F. 1988. CANOCO – an extension of DECORANA to analyze species-environment relationships. Vegetatio 75:159160.CrossRefGoogle Scholar
TER STEEGE, H. & CORNELISSEN, J. H. C. 1988. Collecting and studying bryophytes in the canopy of standing rain forest trees. Pp. 285290 in Glime, J. M. (ed.). Methods in bryology. Hattori Botanical Laboratory, Nichinan.Google Scholar
VAN OYE, P. 1924. Sur l'écologie des épiphytes de la surface des troncs d'arbres à Java. Revue Générale Botanique 36:1230, 6883.Google Scholar
WENT, F. W. 1940. Soziologie der Epiphyten eines tropischen Urwaldes. Annales du Jardin Botanique de Buitenzorg 50:198.Google Scholar
WERNER, F. A., HOMEIER, J. & GRADSTEIN, S. R. 2005. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11:2140.Google Scholar
WESTHOFF, V. & Van Der MAAREL, E. 1973. The Braun–Blanquet approach. Handbook of Vegetation Science 5:617726.Google Scholar
WHITEACRE, D. F. 1981. Additional techniques and safety hints for climbing tall trees, and some equipment and information sources. Biotropica 13:286291.CrossRefGoogle Scholar
WOLF, J. H. D. 1993a. Epiphyte communities of tropical montane rain forests in the northern Andes. I. Lower montane communities. Phytocoenologia 22:152.CrossRefGoogle Scholar
WOLF, J. H. D. 1993b. Epiphyte communities of tropical montane rain forests in the northern Andes. II. Upper montane communities. Phytocoenologia 22:53103.CrossRefGoogle Scholar
WOLF, J. H. D. 1994. Factors controlling the distribution of vascular and nonvascular epiphytes in the northern Andes. Vegetatio 112:1528.CrossRefGoogle Scholar
WOLF, J. H. D. 2005. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212:376393.CrossRefGoogle Scholar
WOLF, J. H. D. & FLAMENCO-S., A. 2003. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30:16891707.CrossRefGoogle Scholar
WOLF, J. H. D. & KONINGS, C. J. F. 2001. Toward the sustainable harvesting of epiphytic bromeliads: a pilot study from the highlands of Chiapas, Mexico. Biological Conservation 101:2331.CrossRefGoogle Scholar
ZIMMERMAN, J. K. & OLMSTED, I. C. 1992. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica 24:402407.CrossRefGoogle Scholar
ZOTZ, G. 2007a. Johansson revisited: the spatial structure of epiphyte assemblages. Journal of Vegetation Science 18:123130.CrossRefGoogle Scholar
ZOTZ, G. 2007b. The population structure of the vascular epiphytes in a lowland forest in Panama correlates with species abundance. Journal of Tropical Ecology 23:337342.CrossRefGoogle Scholar
ZOTZ, G. & SCHULTZ, S. 2008. The vascular epiphytes of a lowland forest in Panama – species composition and spatial structure. Plant Ecology 195:131141.CrossRefGoogle Scholar
ZOTZ, G. & VOLLRATH, B. 2003. The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology 19:8190.CrossRefGoogle Scholar
ZOTZ, G., BERMEJO, P. & DIETZ, H. 1999. The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama. Journal of Biogeography 26:761776.CrossRefGoogle Scholar