Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:04:20.970Z Has data issue: false hasContentIssue false

Long-term performance and herbivory of tree seedlings planted into primary and secondary forests of Central Amazonia

Published online by Cambridge University Press:  30 May 2013

Julieta Benítez-Malvido*
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán, México Biological Dynamics of Forest Fragments Project, National Institute for Research in the Amazon (INPA), C.P. 478, Manaus, AM 69011–970, Brazil
Miguel Martínez-Ramos
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, Michoacán, México
*
1Corresponding author. Email: jbenitez@cieco.unam.mx

Abstract:

Plant survival and growth in tropical rain forest are affected by different biotic and abiotic forces. As time elapses and plants grow the relative importance of such forces as regeneration inhibitors and/or facilitators may change according to habitat and species. To detect within- and among-species divergences in performance over time in different habitats we followed, for nearly a decade, the survival, growth and herbivory of seedlings of the native tree species: Chrysophyllum pomiferum, Micropholis venulosa and Pouteria caimito. In Central Amazonia, young seedlings were planted into old-growth and secondary forests dominated by Vismia spp. One year after planting, C. pomiferum ranked first (i.e. fast growth, fewer dead and less herbivory) for both habitats, followed by M. venulosa and P. caimito. Initial trends changed over time. In the long term, M. venulosa ranked first for both habitats, followed by C. pomiferum and P. caimito ranked consistently lowest. Within-species divergences in growth and herbivory were greater in secondary forest. Initial seedling responses cannot always be used to predict species persistence in the long term. Contrary to previous estimations, old-growth-forest species can persist under Vismia spp. stands, at least when planted.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ASHTON, P. M. S., GUNATILLEKE, C. V. S. & GUNATILLEKE, I. A. U. N. 1994. Seedling survival and growth of four Shorea species in a Sri Lankan rain forest. Journal of Tropical Ecology 12:221232.Google Scholar
BENÍTEZ-MALVIDO, J. 2001. Regeneration in tropical rain forest fragments. Pp. 136145 in Bierregaard, R. O., Lovejoy, T. E. & Mesquita, R. (eds.). Lessons from Amazonia: ecology and conservation of a fragmented forest. Yale University Press, New Haven.Google Scholar
BENÍTEZ-MALVIDO, J. & KOSSMANN-FERRAZ, I. D. K. 1999. Litter cover variability affects seedling performance and herbivory. Biotropica 31:598606.CrossRefGoogle Scholar
BENÍTEZ-MALVIDO, J., MARTÍNEZ-RAMOS, M., CAMARGO, J. L. & FERRAZ, I. 2005. Responses of seedling transplants to environmental variations in contrasting habitats of Central Amazonia. Journal of Tropical Ecology 21:397406.CrossRefGoogle Scholar
BOEGE, K. & MARQUIS, R. J. 2005. Facing herbivory as you grow: the ontogeny of resistance in plants. Trends in Ecology and Evolution 20:441448.CrossRefGoogle ScholarPubMed
BROWN, N. D. & WHITMORE, T. C. 1992. Do dipterocarp seedlings really partition tropical rain forest gaps? Philosophical Transactions of the Royal Society: Biological Sciences 335:369378.Google Scholar
CAMARGO, J. L., FERRAZ, I. D. & IMAKAWA, A. M. 2002. Rehabilitation of degraded areas of Central Amazonia using direct sowing of forest tree seeds. Restoration Ecology 10:636644.CrossRefGoogle Scholar
CHAZDON, R. L., HARVEY, C. A., KOMAR, O., VAN BREUGEL, M., FERGUSON, B. G., GRIFFITH, D. M., MARTÍNEZ-RAMOS, M., MORALES, M., NIGH, R., SOTO-PINTO, L. & PHILPOTT, S. M. 2009. Beyond reserves: a research agenda for conserving biodiversity in tropical cultural landscapes. Biotropica 41:142153.CrossRefGoogle Scholar
CLARK, D. B. & CLARK, D. A. 1992. Life history diversity of canopy and emergent trees in a Neotropical rain forest. Ecological Monographs 62:315344.CrossRefGoogle Scholar
COLEY, P. D. 1980. Effects of leaf age and plant life history patterns on herbivory. Nature 284:545546.CrossRefGoogle Scholar
COLEY, P. D. 1983. Herbivory and defense characteristics of tree species in lowland tropical forest. Ecological Monographs 53:209233.CrossRefGoogle Scholar
COLEY, P. D. & BARONE, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27:305315.CrossRefGoogle Scholar
CONNELL, J. H. & GREEN, P. T. 2000. Seedling dynamics over thirty-two years in a tropical rainforest tree. Ecology 81:568584.CrossRefGoogle Scholar
CRAWLEY, M. 1993.GLIM for ecologists. Blackwell Scientific Publications, Oxford. 392 pp.Google Scholar
CUBIÑA, A. & AIDE, T. M. 2001. The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33:260267.CrossRefGoogle Scholar
DEL VAL, E. & DIRZO, R. 2003. Does ontogeny cause changes in the defensive strategies of the myrmecophyte Cecropia peltata? Plant Ecology 149:3541.CrossRefGoogle Scholar
FONSECA, C. A. 1994. Herbivory and the long-lived leaves of an Amazonian ant-tree. Journal of Ecology 4:833842.CrossRefGoogle Scholar
GANADE, G. 2007. Processes affecting succession in old fields of Brazilian Amazonia. Pp. 7592 in Cramer, V. A. & Hobbs, R. J. (eds.). Old fields: dynamics and restoration of abandoned farmlands. Society for Ecological Restoration International and Island Press, Washington, DC.Google Scholar
GANADE, G. & BROWN, V. K. 2002. Succession in old pastures of Central Amazonia: role of soil fertility and plant litter. Ecology 83:743754.CrossRefGoogle Scholar
GIVNISH, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87:193210.CrossRefGoogle Scholar
HARVEY, C. A., KOMAR, O., CHAZDON, R., FERGUSON, B. G., FINEGAN, B., GRIFFITH, D. M., MARTÍNEZ-RAMOS, M., MORELAES, H., NIGHT, R., VAN BREUGEL, M. & WISHNIE, M. 2008. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology 22:815.CrossRefGoogle ScholarPubMed
HERMS, D. A. & MATTSON, W. J. 1992. The dilemma of plants, to grow or to defend. Quarterly Review of Biology 67:283335.CrossRefGoogle Scholar
HOLL, K. D. & LULOW, M. E. 1997. Effects of species, habitat, and distance from edge on post-dispersal seed predation in a tropical rainforest. Biotropica 29:459468.CrossRefGoogle Scholar
JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forest. American Naturalist 104:501529.CrossRefGoogle Scholar
JANZEN, D. H. & VÁZQUEZ-YANES, C. 1991. Aspects of tropical seed ecology of relevance to management of tropical forested wildlands. Pp. 137157 in Gómez-Pompa, A., Whitmore, T. C. & Hadley, M. (eds.). Rain forest regeneration and management. UNESCO and Parthenon Publishing Group, Paris.Google Scholar
JONES, D. T., SUSILO, F. X. D., BIGNELL, E., HARDIWINOTO, S., GILLISON, A. N. & EGGLETON, P. 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40:380391.CrossRefGoogle Scholar
KING, D. A. 1996. Allometry and life history of tropical trees. Journal of Tropical Ecology 12:2544.CrossRefGoogle Scholar
KLEIN, B. 1989. Effects of forest fragmentation on dung and carrion beetle communities in Central Amazonia. Ecology 70:17151725.CrossRefGoogle Scholar
LEWIS, S. L. & TANNER, E.V. J. 2000. Effects of above- and belowground competition on growth and survival of rain forest tree seedlings. Ecology 81:25252538.CrossRefGoogle Scholar
LOVEJOY, T. E., BIERREGAARD, R. O., RYNALDS, A. B., MALCOLM, J. R., QUINTELA, C. E., HARPER, L. E., BROWN, K. S., POWELL, A. H., SHUBART, H. O. R. & HAYS, M. B. 1986. Edge and other effects of isolation on Amazon forest fragments. Pp. 257285 in Soulé, M. (ed.). Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland.Google Scholar
MESQUITA, R. C. G. 2000. Management of advanced regeneration in secondary forests of the Brazilian Amazon. Forest Ecology and Management 130:131140.CrossRefGoogle Scholar
MESQUITA, R. C. G., ICKES, K., GANADE, G. & WILLIAMSON, G. B. 2001. Alternative successional pathways in the Amazon Basin. Journal of Ecology 89:528537.CrossRefGoogle Scholar
MILLIKEN, W., MILLER, R. P., POLLARD, S. R. & WANDELLI, E. V. 1992. Ethnobotany of the Waimiri Atroari Indians of Brazil. Royal Botanic Gardens, Kew. 165 pp.Google Scholar
NEPSTAD, D., PEREIRA, C. A. & CARDOSO DA SILVA, J. M. 1996. A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos 76:2539.CrossRefGoogle Scholar
NORDEN, N., MESQUITA, R. C. G., BENTOS, T. V., CHAZDON, R. L. & WILLIAMSON, G. B. 2011. Contrasting community compensatory trends in alternative successional pathways in central Amazonia. Oikos 120:143151.CrossRefGoogle Scholar
PENNINGTON, T. D. 1990. Sapotaceae. Flora Neotropica Monograph 52. The New York Botanical Garden, New York. 770 pp.Google Scholar
PEÑA-CLAROS, M. & DE BOO, H. 2002. The effect of forest successional stage on seed removal of tropical rain forest tree species. Journal of Tropical Ecology 18:261274.CrossRefGoogle Scholar
SOBERÓN, M. J., CORDERO, M. C., BENREY, B. B., PARLANGE, P., GARCÍA-SAEZ, C. & BERGES, G. 1988. Patterns of oviposition by Sandia xami Lepidoptera, Lycaenidae in relation to food plant apparency. Ecological Entomology 13:7179.Google Scholar
SOKAL, R. S. & ROHLF, F. J. 1998. Biometry. W. H. Freeman and Company, New York. 887 pp.Google Scholar
SPIRONELLO, W. R. 1999. The Sapotaceae community ecology in a Central Amazonian forest: effects of seed dispersal and seed predation. Ph.D. thesis. University of Cambridge, UK.Google Scholar
STRONG, D. R. 1977. Insect species richness: hispine beetles of Heliconia latispatha. Ecology 58:573582.CrossRefGoogle Scholar
WIELAND, L. M., MESQUITA, R. C. G., BOBROWIEC, P. E. D., BENTOS, T. V. & WILLIAMSON, G. B. 2011. Seed rain and advanced regeneration in secondary succession in the Brazilian Amazon. Tropical Conservation Science 4:300316. Available online: www.tropicalconservationscience.orgCrossRefGoogle Scholar
WOLD, E. N. & MARQUIS, R. J. 1997. Induced defense in white oak, effects on herbivores and consequences for the plant. Ecology 78:13561369.CrossRefGoogle Scholar