Skip to main content Accessibility help
×
Home

Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality

  • Jaqueline Durigon (a1), Sandra Milena Durán (a2) and Ernesto Gianoli (a3) (a4)

Abstract:

Root climbers constitute a distinctive group within climbing plants and some evidence suggests that they are associated with high precipitation and low light availability at local scales, which is in contrast with general patterns of liana distribution in the tropics. The influence of precipitation and seasonality on the occurrence of root climbers was evaluated both globally and in the tropics. The presence/absence of root climbers was recorded in 174 sites of Alwyn H. Gentry Forest Transect Data Set. The effects of mean annual precipitation and dry-season length (and temperature) on their occurrence were analysed using logistic regressions. Root climbers were significantly more frequent in sites with greater precipitation and reduced seasonality. Increasing temperature reduced root-climber occurrence in tropical sites, but this effect was marginally significant at a global scale. Dry and open habitats appear unsuitable for root climbers. This can be explained by the susceptibility to desiccation of adventitious roots and/or the low acclimation ability of these climbers to high irradiance.

Copyright

Corresponding author

1Corresponding author. Email: jaquelinedurigon@gmail.com

References

Hide All
CARRASCO-URRA, F. & GIANOLI, E. 2009. Abundance of climbing plants in a southern temperate rain forest: host tree characteristics or light availability? Journal of Vegetation Science 20:11551162.
CARTER, G. A. & TERAMURA, A. H. 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany 75:10111018.
DEWALT, S. J., SCHNITZER, S. A., CHAVE, J., BONGERS, F., BURNHAM, R. J., CAI, Z. Q., CHUYONG, G., CLARK, D. B., EWANGO, C. E. N., GERWING, J. J., GORTAIRE, E., HART, T., IBARRA-MANRIQUEZ, G., ICKES, K., KENFACK, D., MACIA, M. J., MAKANA, J. R., MARTINEZ-RAMOS, M., MASCARO, J., MOSES, S., MULLER-LANDAU, H. C., PARREN, M. P. E., PARTHASARATHY, N., PÉREZ-SALICRUP, D. R., PUTZ, F. E., ROMERO-SALTOS, H. & THOMAS, D. 2010. Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309317.
DURIGON, J. & WAECHTER, J. L. 2011. Floristic composition and biogeographic relations of a subtropical assemblage of climbing plants. Biodiversity and Conservation 20:10271044.
GALLAGHER, R. V. & LEISHMAN, M. R. 2012. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39:17571771.
GENTRY, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.
GENTRY, A. H. 1991. The distribution and evolution of climbing plants. Pp. 352 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.
GIANOLI, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society B – Biological Sciences 271:20112015.
GIANOLI, E. & SALDAÑA, A. 2013. Phenotypic selection on leaf functional traits of two congeneric species in a temperate rainforest is consistent with their shade tolerance. Oecologia, in press (doi: 10.1007/s00442-013-2590-2).
GIANOLI, E., SALDAÑA, A., JIMÉNEZ-CASTILLO, M. & VALLADARES, F. 2010. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. Journal of Vegetation Science 21:6673.
HEGARTY, E. E. 1988. Canopy dynamics of lianes and trees in subtropical rainforest. Department of Botany, University of Queensland, Brisbane. 241 pp.
HEGARTY, E. E. 1991. Vine–host interactions. Pp. 357376 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.
HEGARTY, E. E. & CABALLÉ, G. 1991. Distribution and abundance of vines in forest communities. Pp. 313336 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.
ICHIHASHI, R., NAGASHIMA, H. & TATENO, M. 2010. Biomass allocation between extension- and leaf display-oriented shoots in relation to habitat differentiation among five deciduous liana species in a Japanese cool-temperate forest. Plant Ecology 211:181190.
ISNARD, S. & SILK, W. K. 2009. Moving with climbing plants from Charles Darwin's time into the 21st century. American Journal of Botany 96:12051221.
JIMÉNEZ-CASTILLO, M., WISER, S. K. & LUSK, C. H. 2007. Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. Journal of Biogeography 34:163168.
KALACSKA, M., SANCHEZ-AZOFEIFA, G. A., RIVARD, B., CALVO-ALVARADO, J. C. & QUESADA, M. 2008. Baseline assessment for environmental services payments from satellite imagery: a case study from Costa Rica and Mexico. Journal of Environmental Management 88:348359.
KUSUMOTO, B., ENOKI, T. & KUBOTA, Y. 2013. Determinant factors influencing the spatial distributions of subtropical lianas are correlated with components of functional trait spectra. Ecological Research 28:919.
ORIHUELA, R. L. 2010. Diversidade e abundância de hemiepífitos em um gradiente altitudinal na Floresta Atlântica no sul do Brasil. Universidade Federal do Rio Grande do Sul, Porto Alegre. 29 pp.
PHILLIPS, O. & MILLER, J. S. 2002. Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. Monograph in Systematic Botany from the Missouri Botanical Garden 89:1319.
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.
PUTZ, F. E. & HOLBROOK, N. M. 1991. Biomechanical studies of vines. Pp. 7398 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17:223230.
SCHNITZER, S. A. & BONGERS, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14:397406.
TERAMURA, A. H., GOLD, W. G. & FORSETH, I. N. 1991. Physiological ecology of mesic, temperate woody vines. Pp. 245285 in Putz, F. E. & Money, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.
VALLADARES, F. & NIINEMETS, U. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution and Systematics 39:237257.
VALLADARES, F., GIANOLI, E. & SALDAÑA, A. 2011. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? Annals of Botany 108:231239.
VAN DER HEIJDEN, G. M. F. & PHILLIPS, O. L. 2008. What controls liana success in Neotropical forests? Global Ecology and Biogeography 17:372383.
WILDER, G. J. 1992. Comparative morphology and anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae). Canadian Journal of Botany 70:3848.

Keywords

Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality

  • Jaqueline Durigon (a1), Sandra Milena Durán (a2) and Ernesto Gianoli (a3) (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed