Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:14:22.265Z Has data issue: false hasContentIssue false

Effects of stochastic herbivory events on population maintenance of an understorey palm species (Geonoma schottiana) in riparian tropical forest

Published online by Cambridge University Press:  29 January 2010

Maurício Bonesso Sampaio*
Affiliation:
Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
Aldicir Scariot
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Ecologia e Conservação, Parque Estação Biológica – PqEB – Av. W5 Norte (final), Caixa Postal 02372, 70770-900, Brasília, DF, Brazil Programa das Nações Unidas para o Desenvolvimento, PNUD – ONU. EQSW 103/104, lote 01, Bloco D, 70670-350, Brasília, DF, Brazil
*
1Corresponding author. Current address: Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Caixa Postal 6109, Universidade Estadual de Campinas – UNICAMP, 13083-970, Campinas, SP, Brazil. Email: mauriciobonesso@gmail.com

Abstract:

Plant populations can respond to temporal environmental heterogeneity caused by natural disturbances, such as herbivory. Palm individuals of several species are preyed upon by mammals, but the effects of such herbivory events on population dynamics remain poorly known. To evaluate the effects of environmental stochasticity on a Geonoma schottiana (Arecaceae) population, we surveyed annually 40 permanent 20 × 10-m plots in a riparian tropical forest over 5 y (2000–2004) and results were analysed using matrix models. The population growth rate (λ) was in equilibrium during the study period and only one bad year was identified (2002–2003), which had a higher mortality of juvenile individuals due to herbivory. Additionally, the bad year had a higher mortality of reproductive individuals than the other periods. The stasis matrix elements of the later life stages were the vital rates with highest elasticities. The mortality of juvenile and reproductive individuals had a negative contribution to λ in the bad year. Conversely, the growth of infant and juvenile individuals and the clonal growth of juveniles were the vital rates with highest contribution to stability maintenance of λ in the bad year in a life-table response experiment. The palm population had a high individual density, high proportion of the initial life stages, clonal growth, high fertility, abundant seed bank and high seedling recruitment. Despite these traits, if stochastic herbivory events occur frequently over a long period of time, the population will have a negative growth rate and the probability of local extinction will be very high.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADAMS, V. M., MARSH, D. M. & KNOX, J. S. 2005. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biological Conservation 124:425436.CrossRefGoogle Scholar
ALFONSO-CORRADO, C., CLARK-TAPIA, R. & MENDOZA, A. 2007. Demography and management of two clonal oaks: Quercus eduardii and Q. potosina (Fagaceae) in central México. Forest Ecology and Management 251:129141.CrossRefGoogle Scholar
BAROT, S., GIGNOUX, J., VUATTOUX, R. & LEGENDRE, S. 2000. Demography of a savanna palm tree in Ivory Coast (Lamto): population persistence and life-history. Journal of Tropical Ecology 16:637655.CrossRefGoogle Scholar
BAROT, S., GIGNOUX, J. & LEGENDRE, S. 2002. Stage-classified matrix models and age estimates. Oikos 96:5661.CrossRefGoogle Scholar
BASTRENTA, B., LEBRETON, J. D. & THOMPSON, J. D. 1995. Predicting demographic change in response to herbivory – a model of the effects of grazing and annual variation on the population dynamics of Anthyllis vulneraria. Journal of Ecology 83:603611.CrossRefGoogle Scholar
BULLOCK, S. H. 1980. Demography of an undergrowth palm in littoral Cameroon. Biotropica 12:247255.CrossRefGoogle Scholar
CASWELL, H. 2001. Matrix population models: construction, analysis and interpretation. Sinauer Associates, Sunderland. 722 pp.Google Scholar
CHAZDON, R. L. 1992. Patterns of growth and reproduction of Geonoma congesta, a clustered understory palm. Biotropica 24:4351.CrossRefGoogle Scholar
CLARK-TAPIA, R., MANDUJANO, M. C., VALVERDE, T., MENDOZA, A. & MOLINA-FREANER, F. 2005. How important is clonal recruitment for population maintenance in rare plant species? The case of the narrow endemic cactus, Stenocereus eruca, in Baja California, Mexico. Biological Conservation 124:123132.CrossRefGoogle Scholar
COCHRAN, M. E. & ELLNER, S. 1992. Simple methods for calculating age-based life history parameters for stage-structured populations. Ecological Monographs 62:345364.CrossRefGoogle Scholar
DE KROON, H., PLAISIER, A., VAN GROENENDAEL, J. & CASWELL, H. 1986. Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67:14271431.CrossRefGoogle Scholar
DE STEVEN, D. 1989. Genet and ramet demography of Oenocarpus mapora subsp. mapora, a clonal palm of Panamanian tropical moist forest. Journal of Ecology 77:579596.CrossRefGoogle Scholar
DE STEVEN, D. & PUTZ, F. 1985. Mortality rates of some rainforest palms in Panama. Principes 29:162165.Google Scholar
EHRLÉN, J. 1995. Demography of the perennial herb Lathyrus vernus. II. Herbivory and population dynamics. Journal of Ecology 83:297308.CrossRefGoogle Scholar
ELDERD, B. D. & DOAK, D. F. 2006. Comparing the direct and community-mediated effects of disturbance on plant population dynamics: flooding, herbivory and Mimulus guttatus. Journal of Ecology 94:656669.CrossRefGoogle Scholar
ENDRESS, B. A., GORCHOV, D. L. & NOBLE, R. B. 2004. Non-timber forest product extraction: effects of harvest and browsing on an understory palm. Ecological Applications 14:11391153.CrossRefGoogle Scholar
ENRIGHT, N. J. & WATSON, A. D. 1992. Population dynamics of the nikau palm, Rhopalostylis sapida (Wendl. et Drude), in a temperate forest remnant near Auckland, New Zealand. New Zealand Journal of Botany 30:2943.CrossRefGoogle Scholar
EVANS, M. E. K., HOLSINGER, K. E. & MENGES, E. S. 2008. Modeling the effect of fire on the demography of Dicerandra frutescens ssp. frutescens (Lamiaceae), an endangered plant endemic to Florida scrub. Population Ecology 50:5362.CrossRefGoogle Scholar
FLORES, C. F. & ASHTON, P. M. S. 2000. Harvesting impact and economic value of Geonoma deversa, Arecaceae, an understory palm used for roof thatching in the Peruvian amazon. Economic Botany 54:267277.CrossRefGoogle Scholar
FUNCH, L. S., FUNCH, R. & BARROSO, G. M. 2002. Phenology of gallery and montane forest in the Chapada Diamantina, Bahia, Brazil. Biotropica 34:4050.CrossRefGoogle Scholar
HENDERSON, A., GALEANO, G. & BERNAL, R. 1995. Field guide to the palms of the Americas. Princeton University Press, New Jersey. 498 pp.Google Scholar
HEYDE, C. C. & COHEN, J. E. 1985. Confidence intervals for demographic projections based on products of random matrices. Theoretical Population Biology 27:120153.CrossRefGoogle ScholarPubMed
JACQUEMYN, H., BRYS, R., HONNAY, O., HERMY, M. & ROLDÁN-RUIZ, I. 2006. Sexual reproduction, clonal diversity and genetic differentiation in patchily distributed populations of the temperate forest herb Paris quadrifolia (Trilliaceae). Oecologia 147:434444.CrossRefGoogle ScholarPubMed
KIMURA, M. & SIMBOLON, H. 2002. Allometry and life history of a forest understory palm Pinanga coronata (Arecaceae) on Mount Halimun, West Java. Ecological Research 17:323338.CrossRefGoogle Scholar
KLINK, C. A. & MACHADO, R. B. 2005. Conservation of the Brazilian Cerrado. Conservation Biology 193:707713.CrossRefGoogle Scholar
KOUASSI, K. I., BAROT, S., GIGNOUX, J. & ZORO BI, I. A. 2008. Demography and life history of two rattan species, Eremospatha macrocarpa and Laccosperma secundiflorum, in Côte d'Ivoire. Journal of Tropical Ecology 24:493503.CrossRefGoogle Scholar
KÖPPEN, W. 1931. Grundriss der Klimakunde. Walter de Gruyter, Berlin. 388 pp.CrossRefGoogle Scholar
KWIT, C., HORVITZ, C. C. & PLATT, W. J. 2004. Conserving slow growing, long lived tree species: input from the demography of a rare understory conifer, Taxus floridana. Conservation Biology 18:432443.CrossRefGoogle Scholar
MARTORELL, C. 2007. Detecting and managing an overgrazing-drought synergism in the threatened Echeveria longissima (Crassulaceae): the role of retrospective demographic analysis. Population Ecology 49:115125.CrossRefGoogle Scholar
MENGES, E. S. & QUINTANA-ASCENCIO, P. F. 2004. Population viability with fire in Eryngium cuneifolium: deciphering a decade of demographic data. Ecological Monographs 74:7999.CrossRefGoogle Scholar
NIMER, E. 1989. Climatologia do Brasil. IBGE, Rio de Janeiro. 421 pp.Google Scholar
OLMSTED, I. & ALVAREZ-BUYLLA, E. R. 1995. Sustainable harvesting of tropical trees: demography and matrix models of two palm species in Mexico. Ecological Applications 5:484500.CrossRefGoogle Scholar
PASCARELLA, J. B. & HORVITZ, C. C. 1998. Hurricane disturbance and the population dynamics of a tropical understory shrub: megamatrix elasticity analysis. Ecology 79:547563.CrossRefGoogle Scholar
PINARD, M. 1993. Impacts of stem harvesting on populations of Iriartea deltoidea (Palmae) in an extractive reserve in Acre, Brazil. Biotropica 25:214.CrossRefGoogle Scholar
RODRÍGUEZ-BUTIRICÁ, S., ORJUELA, M. A. & GALEANO, G. 2005. Demography and life history of Geonoma orbignyana: an understory palm used as foliage in Colombia. Forest Ecology and Management 211:329340.CrossRefGoogle Scholar
SAMPAIO, M. B. 2006. Ecologia populacional da palmeira Geonoma schottiana Mart. em mata de galeria no Brasil Central. Masters thesis, University of Brasilia, Brazil.Google Scholar
SAMPAIO, M. B. & SCARIOT, A. 2008. Growth and reproduction of the understorey palm Geonoma schottiana Mart. in the gallery forest in Central Brazil. Revista Brasileira de Botânica 31:433442.Google Scholar
SCARIOT, A. O., OLIVEIRA-FILHO, A. T. & LLERAS, E. 1989. Species richness, density and distribution of palms in an Eastern Amazonian seasonally flooded forest. Principes 33:172179.Google Scholar
SIEBERT, S. F. 2000. Abundance and growth of Desmoncus orthacanthos Mart. (Palmae) in response to light and ramet harvesting in five forest sites in Belize. Forest Ecology and Management 137:8390.CrossRefGoogle Scholar
SILVERTOWN, J., FRANCO, M., PISANTY, I. & MENDOZA, A. 1993. Comparative plant demography relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81:465476.CrossRefGoogle Scholar
SLETVOLD, N. & RYDGREN, K. 2007. Population dynamics in Digitalis purpurea: the interaction of disturbance and seed bank dynamics. Journal of Ecology 95:13461359.CrossRefGoogle Scholar
SOUZA, A. F. & MARTINS, F. R. 2004. Microsite specialization and spatial distribution of Geonoma brevispatha, a clonal palm in south-eastern Brazil. Ecological Research 19:521532.CrossRefGoogle Scholar
SOUZA, A. F. & MARTINS, F. R. 2006. Demography of the clonal palm Geonoma brevispatha in a Neotropical swamp forest. Austral Ecology 31:869881.CrossRefGoogle Scholar
SVENNING, J. C. 2000. Growth strategies of clonal palms (Arecaceae) in a neotropical rainforest, Yasuni, Ecuador. Australian Journal of Botany 48:167178.CrossRefGoogle Scholar
SVENNING, J. C. 2002. Crown illumination limits the population growth rate of a neotropical understorey palm (Geonoma macrostachys, Arecaceae). Plant Ecology 159:185199.CrossRefGoogle Scholar
TICKTIN, T. 2003. Relationships between El Niño southern oscillation and demographic patterns in a substitute food for collared peccaries in Panama. Biotropica 35:189197.Google Scholar
ZUIDEMA, P. A. & BOOT, R. G. A. 2002. Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. Journal of Tropical Ecology 18:131.CrossRefGoogle Scholar