Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T09:30:30.694Z Has data issue: false hasContentIssue false

The effect of tree-on-tree interactions and abiotic conditions on woody communities in Brazilian savannas

Published online by Cambridge University Press:  05 July 2023

Davi Borges Chagas*
Affiliation:
Programa de Pós-graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil Herbário do Tocantins (HTO), Núcleo de Estudos Ambientais, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
Alessandro Rapini*
Affiliation:
Programa de Pós-graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
Pedro Manuel Villa
Affiliation:
Programa de Pós-graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
Rosane Garcia Collevatti
Affiliation:
Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Goiás, Goiânia, Brazil Laboratório de Ecologia Espacial e Conservação, Departamento de Biodiversidade, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
*
Corresponding authors: Davi Borges Chagas and Alessandro Rapini; Emails: davibchagas@gmail.com, rapinibot@yahoo.com.br
Corresponding authors: Davi Borges Chagas and Alessandro Rapini; Emails: davibchagas@gmail.com, rapinibot@yahoo.com.br

Abstract

Fire plays a crucial role in shaping plant communities in South American savannas. However, the impact of biotic interactions on tree communities still needs to be better explored. In this study, we evaluated the influence of tree-on-tree interactions and abiotic conditions on the structure and diversity of woody communities in savannas of Central Brazil. We used plots of 10 × 10 m in three preservation areas of savanna to assess the abundance and composition of juveniles and adults in woody communities associated with two Apocynaceae tree species: Hancornia speciosa, postulated to show negative interactions with the associated tree community, and Himatanthus obovatus, postulated to show positive interactions. Our results revealed that while abiotic factors, represented by the altitude, are more critical in shaping the community of juvenile trees, tree-on-tree interactions have a stronger influence on adult tree populations, driving community dynamics during plant recruitment. Specifically, Hancornia speciosa reduces the abundance of adults, whereas Himatanthus obovatus enhances their relative abundance; both shape the composition of tree communities. Consequently, tree-on-tree interactions create distinct mosaics at various stages of regeneration, contributing to savanna dynamics and conservation.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, RCR, Hoffmann, WA, Vasconcelos, HL, Pilon, NA, Rossatto, DR and Durigan, G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Science Advances 3, e1701284. https://doi.org/10.1126/sciadv.1701284 CrossRefGoogle ScholarPubMed
Almeida, LM, Nogueira, CA, Borges, PP, Prado, ADL and Gonçalves, PJ (2016) State of the art of scientific literature on Hancornia speciosa: trends and gaps. Revista Brasileira de Fruticultura 38, 110. https://doi.org/10.1590/0100-29452016869 CrossRefGoogle Scholar
APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 120. https://doi.org/10.1111/boj.12385 CrossRefGoogle Scholar
Archibald, S, Bond, WJ, Hoffmann, W, Lehmann, C, Staver, C and Stevens, N (2019) Distribution and determinants of savannas. In Scogings, PF and Sankaran, M (eds), Savanna Woody Plants and Large Herbivores. Hoboken, NJ: Wiley, pp. 124.Google Scholar
Archibald, S, Lehmann, CER, Gómez-Dans, JL and Bradstock, RA (2013) Defining pyromes and global syndromes of fire regimes. The Proceedings of the National Academy of Sciences 110, 64426447. https://doi.org/10.1073/pnas.1211466110 CrossRefGoogle ScholarPubMed
Arnan, X, Cerdá, X and Rodrigo, A (2020) Do forest fires make biotic communities homogeneous or heterogeneous? Patterns of taxonomic, functional, and phylogenetic ant beta diversity at local and regional landscape scales. Frontiers in Forests and Global Change 3, 67. https://doi.org/10.3389/ffgc.2020.00067 CrossRefGoogle Scholar
Barnes, PW and Archer, S (1999) Tree-shrub interactions in a subtropical savanna parkland: competition or facilitation? Journal of Vegetation Science 10, 525536. https://doi.org/10.2307/3237187 CrossRefGoogle Scholar
Baselga, A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19, 134143. https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
Bond, ML, Bradley, C and Lee, DE (2016) Foraging habitat selection by California spotted owls after fire. The Journal of Wildlife Management 80, 12901300. https://doi.org/10.1002/jwmg.21112 CrossRefGoogle Scholar
Borghetti, F, Barbosa, E, Ribeiro, L, Ribeiro, JF and Walter, BMT (2019) South American savannas. In Scogings, PF and Sankaran, M (eds), Savanna Woody Plants and Large Herbivores. Hoboken, NJ: Wiley, pp. 77122.CrossRefGoogle Scholar
Bray, JR and Curtis, JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecology Monographs 27, 325349. https://doi.org/10.2307/1942268 CrossRefGoogle Scholar
Brito, BN and Silva, EB (2019) Análise multitemporal de uso e cobertura da terra na Reserva da Biosfera do Cerrado. Ateliê Geográfico 13, 7391. https://doi.org/10.5216/ag.v13i2.54747 CrossRefGoogle Scholar
Bruno, JF, Stachowicz, JJ and Bertness, MD (2003) Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18, 119125. https://doi.org/10.1016/S0169-5347(02)00045-9 CrossRefGoogle Scholar
Buisson, E, Le Stradic, S, Silveira, FAO, Durigan, G, Overbeck, GE, Fidelis, A, Fernandes, GW, Bond, WJ, Hermann, J-M, Mahy, G, Alvarado, ST, Zaloumis, NP and Veldman, JW (2019) Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews 94, 590609. https://doi.org/10.1111/brv.12470 CrossRefGoogle ScholarPubMed
Burnham, KP and Anderson, DR (2002) Model Selection and Multi-model Inference: A Practical Information-theoretic Approach. Heidelberg: Springer-Verlag.Google Scholar
Burnham, KP, Anderson, DR and Huyvaert, KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65, 2335. https://doi.org/10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
Cadotte, MW and Tucker, CM (2017) Should environmental filtering be abandoned? Trends in Ecology and Evolution 32, 429437. https://doi.org/10.1016/j.tree.2017.03.004 CrossRefGoogle ScholarPubMed
Campos, PV, Schaefer, CEGR, Pontara, V, Senra, EO, Viana, PL, Oliveira, FS, Candido, HG and Villa, PM (2021) Exploring the relationship between soil and plant evolutionary diversity in the Roraima table mountain OCBIL, Guayana Highlands. Biological Journal of the Linnean Society 133, 587603. https://doi.org/10.1093/biolinnean/blab013 CrossRefGoogle Scholar
Carrión, JF, Gastauer, M, Mota, NM and Meira-Neto, JAA (2017) Facilitation as a driver of plant assemblages in Caatinga. Journal of Arid Environments 142, 5058. https://doi.org/10.1016/j.jaridenv.2017.03.006 CrossRefGoogle Scholar
Cavender-Bares, J, Kozak, KH, Fine, PVA and Kembel, SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters 12, 693715. https://doi.org/10.1111/j.1461-0248.2009.01314.x CrossRefGoogle ScholarPubMed
Chagas, DB and Pelicice, FM (2018) Response of vegetation to fire disturbance: short-term dynamics in two savanna physiognomies. Community Ecology 19, 211222. https://doi.org/10.1556/168.2018.19.3.2 CrossRefGoogle Scholar
Chagas, DB, Rapini, A and Collevatti, RG (2020) Biotic interactions and limitations to explain their effects on a neotropical savanna plant community. Acta Oecologica 108, 103627. https://doi.org/10.1016/j.actao.2020.103627 CrossRefGoogle Scholar
Chao, A, Gotelli, NJ, Hsieh, TC, Sander, EL, Ma, KH, Colwell, RK and Ellison, AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecology Monographs 84, 4567. https://doi.org/10.1890/13-0133.1 CrossRefGoogle Scholar
Collevatti, RG, Rodrigues, EE, Vitorino, LC, Lima-Ribeiro, MS, Chaves, LJ and Telles, MPC (2018) Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes. Annals of Botany 122, 973984. https://doi.org/10.1093/aob/mcy060 Google ScholarPubMed
Colwell, RK (2017) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 8.2. User’s Guide and Application. Available at http://purl.oclc.org/estimates Google Scholar
Costa, MH and Pires, GF (2010) Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. International Journal of Climatology 30, 19701979. https://doi.org/10.1002/joc.2048 CrossRefGoogle Scholar
Crawley, MJ (2013) The R Book, 2nd ed. West Sussex, UK: John Wiley & Sons.Google Scholar
Critical Ecosystem Partner Fund (2018) Ecosystem Profile: Cerrado Biodiversity Hotspot. Available at http://www.cepf.net/where_we_work/regions/south_america/cerrado/Pages/default.aspx Google Scholar
Dantas, VL, Hirota, M, Oliveira, RS and Pausas, JG (2016) Disturbance maintains alternative biome states. Ecology Letters 19, 1219. https://doi.org/10.1111/ele.12537 CrossRefGoogle ScholarPubMed
Datry, T, Bonada, N and Heino, J (2015) Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125,149159. https://doi.org/10.1111/oik.02922 CrossRefGoogle Scholar
Dinno, A (2017) “dunn.test” Package: Dunn’s Test of Multiple Comparisons Using Rank Sums. R Studio package version 1. 0.14. Available at http://CRAN.R-project.org/package=dunn.test.Google Scholar
Durigan, G, Pilon, NAL, Abreu, RCR, Hoffmann, WA, Martins, M, Fiorillo, BF, Antunes, AZ, Carmignotto, AP, Maravalhas, JB, Vieira, J and Vasconcelos, HL (2020) No net loss of species diversity after prescribed fires in the Brazilian savanna. Frontiers in Forest and Global Change 3, 13. https://doi.org/10.3389/ffgc.2020.00013 CrossRefGoogle Scholar
Felfili, JM, Rezende, AV, Silva, J and Silva, MA (2000) Changes in the floristic composition of Cerrado sensu stricto in Brazil over a nine-year period. Journal of Tropical Ecology 16, 579590. https://doi.org/10.1017/S0266467400001589 CrossRefGoogle Scholar
Flake, SW, Honda, EA, Pilon, NAL, Hoffmann, WA and Durigan, G (2022) Not all trees can make a forest: tree species composition and competition control forest encroachment in a tropical savanna. Journal of Ecology 110, 301312. https://doi.org/10.1111/1365-2745.13820 CrossRefGoogle Scholar
Flora and Funga of Brazil (2022) Flora and Funga of Brazil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br Google Scholar
Galván-Cisneros, CM, Gastauer, M, Massante, JC, Villa, PM and Meira-Neto, JAA (2023) Simultaneous competition and environmental filtering in woody communities of the understory of Eucalyptus plantations in the Cerrado. Perspectives in Plant Ecology, Evolution and Systematics 59, 125731. https://doi.org/10.1016/j.ppees.2023.125731.CrossRefGoogle Scholar
Gonçalves, VD (2016) Potencial Alelopático de Extratos Foliares de Espécies do Cerrado. M.Sc. Thesis, Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso, Brazil.Google Scholar
Grime, JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86, 902910. https://doi.org/10.1046/j.1365-2745.1998.00306.x CrossRefGoogle Scholar
Grubb, PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews 52, 107145. https://doi.org/10.1111/j.1469-185X.1977.tb01347.x CrossRefGoogle Scholar
Gui Ferreira, A and Aquila, EMEA (2000) Alelopatia: uma área emergente da ecofisiologia. Revista Brasileira de Fisiologia Vegetal 12, 175204. http://www.uv.mx/personal/tcarmona/files/2010/08/Gui-y-Alvez-1999.pdf Google Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Holdo, RM and Nippert, JB (2023) Linking resource- and disturbance-based models to explain tree–grass coexistence in savannas New Phytologist 237, 19661979. https://doi.org/10.1111/nph.18648 CrossRefGoogle ScholarPubMed
Hutchinson, TC (1967) Comparative studies of the ability of species to withstand prolonged periods of darkness. Journal of Ecology 55, 291299. https://doi.org/10.2307/2257878 CrossRefGoogle Scholar
IBGE – Instituto Brasileiro de Geografia e Estatística (2019) BIOMA (MapServer). Available at https://mapasinterativos.ibge.gov.br/arcgis/rest/services/BIOMA/MapServer.Google Scholar
ICMBio – Instituto Chico Mendes (2019) Unidades de Conservação no Bioma Cerrado. Available at http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/cerrado.Google Scholar
INPE – Instituto Nacional de Pesquisas Espaciais (2019) Portal do Monitoramento de Queimadas e Incêndios. Available at http://www.inpe.br/queimadas Google Scholar
Jaccard, P (1908) Sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44, 223270. https://doi.org/10.5169/seals-268384 Google Scholar
Klink, CA and Machado, RB (2005) Conservation of the Brazilian Cerrado. Conservation Biology 19, 707713. https://doi.org/10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
Lahsen, M, Bustamante, MMC and Dalla-Nora, EL (2016) Undervaluing and overexploiting the Brazilian Cerrado at our peril. Environment 58, 415. https://doi.org/10.1080/00139157.2016.1229537 Google Scholar
Le Stradic, S, Roumet, C, Durigan, G, Cancian, L and Fidelis, A (2021) Variation in biomass allocation and root functional parameters in response to fire history in Brazilian savannas. Journal of Ecology 109, 41434157. https://doi.org/10.1111/1365-2745.13786 CrossRefGoogle Scholar
Lehmann, CER, Anderson, TM, Sankaran, M, Higgins, SI, Archibald, S, Hoffmann, WA, Hanan, NP, Williams, RJ, Fensham, RJ, Felfili, J, Hutley, LB, Ratnam, J, San Jose, J, Montes, R, Franklin, D, Russell-Smith, J, Ryan, CM, Durigan, G, Hiernaux, P, Haidar, R, Bowman, DMJS and Bond, WJ (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343, 548552. https://doi.org/10.1126/science.1247355 CrossRefGoogle ScholarPubMed
Lehmann, CER, Archibald, SA, Hoffmann, WA and Bond, WJ (2011) Deciphering the distribution of the savanna biome. New Phytologist 191, 197209. https://doi.org/10.1111/j.1469-8137.2011.03689.x CrossRefGoogle ScholarPubMed
Levick, SR and Rogers, KH (2011) Context-dependent vegetation dynamics in an African Savanna. Landscape Ecology 26, 515528. https://doi.org/10.1007/s10980-011-9578-2 CrossRefGoogle Scholar
Lima, RAF and Gandolfi, S (2009) Structure of the herb stratum under different light regimes in the submontane Atlantic rain forest. Brazilian Journal of Biology 69, 289296. https://doi.org/10.1590/S1519-69842009000200008 CrossRefGoogle ScholarPubMed
Long, JA (2020) “jtools” Package: Analysis and Presentation of Social Scientific Data. Available at https://cran.r-project.org/web/packages/jtools/index.html.Google Scholar
Lortie, CJ, Brooker, RW, Choler, P, Kikvidze, Z, Michalet, R, Pugnaire, FI and Callaway, RM (2004) Rethinking plant community theory. Oikos 107, 433438. https://doi.org/10.1111/j.0030-1299.2004.13250.x CrossRefGoogle Scholar
Magurran, AE (2004) Measuring Biological Diversity. Oxford: Blackwell.Google Scholar
Marengo, JA, Jimenez, JC, Espinoza, J-C, Cunha, AP and Aragão, LEO (2022) Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Scientific Reports 12, 457. https://doi.org/10.1038/s41598-021-04241-4 CrossRefGoogle ScholarPubMed
Marques, EQ, Marimon Junior, BH, Marimon, BS, Matricardi, EAT, Mews, HA and Colli, GR (2020) Redefining the Cerrado-Amazonia transition: implications for conservation. Biodiversity and Conservation 29, 15011517. https://doi.org/10.1007/s10531-019-01720-z CrossRefGoogle Scholar
Midgley, JJ, Lawes, MJ and Chamaillé-Jammes, S (2010) Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Australian Journal of Botany 58, 111. https://doi.org/10.1071/BT09034 CrossRefGoogle Scholar
MMA – Ministério do Meio Ambiente (2019) Reserva da Biosfera. Available at http://www.cepf.net/where_we_work/regions/south_america/cerrado/Pages/default.aspx Google Scholar
Monachino, J (1945) A revision of Hancornia (Apocynaceae). Lilloa 11, 1948.Google Scholar
Mueller-Dombois, D and Ellenberg, H (1974) Aims and Methods of Vegetation Ecology. New York: John Wiley.Google Scholar
Olson, DM, Dinerstein, E, Wikramanayake, ED, Burgess, ND, Powell, GVN, Underwood, EC, D’amico, JA, Itoua, I, Strand, HE, Morrison, JC, Loucks, CJ, Allnutt, TF, Ricketts, TH, Kura, Y, Lamoreux, JF, Wettengel, WW, Hedao, P and Kassem, KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933938. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2 CrossRefGoogle Scholar
Overbeck, GE, Vélez-Martin, E, Menezes, LS, Anand, M, Baeza, S, Carlucci, MB, Dechoum, MS, Durigan, G, Fidelis, A, Guido, A, Moro, MF, Munhoz, CBR, Reginato, M, Rodrigues, RS, Rosenfield, MF, Sampaio, AB, Barbosa da Silva, FH, Silveira, FAO, Sosinski, ÊE, Staude, IR, Temperton, VM, Turchetto, C, Veldman, JW, Viana, PL, Zappi, DC and Müller, SC (2022) Placing Brazil’s grasslands and savannas on the map of science and conservation. Perspectives in Plant Ecology, Evolution and Systematics 56, 125687. https://doi.org/10.1016/j.ppees.2022.125687 CrossRefGoogle Scholar
Pausas, JG and Bond, WJ (2020) Alternative biome states in terrestrial ecosystems. Trends in Plant Science 25, 250263. https://doi.org/10.1016/j.tplants.2019.11.003 CrossRefGoogle ScholarPubMed
Pausas, JG and Bond, WJ (2021) Alternative biome states challenge the modelling of species’ niche shifts under climate change. Journal of Ecology 109, 39623971. https://doi.org/10.1111/1365-2745.13781 CrossRefGoogle Scholar
Peláez, M, Dirzo, R, Fernandes, GW and Perea, R (2019) Nurse plant size and biotic stress determine quantity and quality of plant facilitation in oak savannas. Forest Ecology and Management 437, 435442. https://doi.org/10.1016/j.foreco.2019.02.010 CrossRefGoogle Scholar
Pellegrini, AFA (2016) Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313324. https://doi.org/10.1890/15-0869.1 CrossRefGoogle ScholarPubMed
Pinheiro, EA, Coimbra, RR, Silva, KLF and Ferreira, WDM (2018) Characterization and phenotypic variability in natural populations of mangabeira in the state of Tocantins, Brazil. Revista Caatinga 31, 560571. https://doi.org/10.1590/1983-21252018v31n304rc CrossRefGoogle Scholar
Pivello, VR, Vieira, I, Christianini, AV, Ribeiro, DB, Menezese, LS, Berlinck, CN, Melog, FPL, Marengo, JA, Tornquist, CG, Tomas, WM and Overbeck, GE (2021) Understanding Brazil’s catastrophic fires: causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation 19, 233255. https://doi.org/10.1016/j.pecon.2021.06.005 CrossRefGoogle Scholar
Ploughe, LW, Jacobs, EM, Frank, GS, Greenler, SM, Smith, MD and Dukes, JS (2019) Community Response to Extreme Drought (CRED): a framework for drought-induced shifts in plant–plant interactions. New Phytologist 222, 5269. https://doi.org/10.1111/nph.15595 CrossRefGoogle ScholarPubMed
Plumel, MM (1991) Le genre Himatanthus (Apocynaceae): révision taxonomique. Bradea 5, 1101.Google Scholar
Portet, S (2020) A primer on model selection using the Akaike Information Criterion. Infectious Disease Modelling 5, 111128. https://doi.org/10.1016/j.idm.2019.12.010 CrossRefGoogle ScholarPubMed
R Core Team (2019) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at https://www.R-project.org Google Scholar
Reis, SM, Lenza, E, Marimon, BS, Gomes, L, Forsthofer, M, Morandi, PS, Marimon Junior, BH, Feldpausch, TR and Elias, F (2015) Post-fire dynamics of the woody vegetation of a savanna forest (Cerradão) in the Cerrado-Amazon transition zone. Acta Botanica Brasilica 29, 408416. https://doi.org/10.1590/0102-33062015abb0009 CrossRefGoogle Scholar
Ribeiro, JF and Walter, BMT (2008) As principais fitofisionomias do bioma Cerrado. In Sano, SM, Almeida, SP and Ribeiro, JF (eds), Cerrado: Ecologia e Flora (Volume 1). Brasília: Embrapa Informação Tecnológica.Google Scholar
Ruggiero, PGC, Batalha, MA, Pivello, VR and Meirelles, ST (2002), Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecology 160, 116. https://doi.org/10.1023/A:1015819219386 CrossRefGoogle Scholar
Salles, JC and Schiavini, I (2007) Estrutura e composição do estrato de regeneração em um fragmento florestal urbano: implicações para a dinâmica e a conservação da comunidade arbórea. Acta Botanica Brasilica 21, 223233. https://doi.org/10.1590/S0102-33062007000100021 CrossRefGoogle Scholar
Sankaran, M (2019) Droughts and the ecological future of tropical savanna vegetation. Journal of Ecology 107, 15311549. https://doi.org/10.1111/1365-2745.13195 CrossRefGoogle Scholar
Sankaran, M, Ratnam, J and Hana, NP (2004) Tree–grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters 7, 480490. https://doi.org/10.1111/j.1461-0248.2004.00596 CrossRefGoogle Scholar
Sano, EE, Rosa, R, Scaramuzza, CAM, Adami, M, Bolfe, EL, Coutinho, AC, Esquerdo, JCDM, Maurano, LEP, Narvaes, IS, Oliveira Filho, FJB, Silva, EB, Victoria, DC, Ferreira, LG, Brito, JLS, Bayma, AP, Oliveira, GH and Bayma-Silva, G (2019) Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013. Pesquisa Agropecuária Brasileira 54, e00138. https://doi.org/10.1590/S1678-3921.pab2019.v54.00138 CrossRefGoogle Scholar
Santana, JCO and Simon, MF (2022) Plant diversity conservation in an agricultural frontier in the Brazilian Cerrado. Biodiversity and Conservation 31, 667681. https://doi.org/10.1007/s10531-022-02356-2 CrossRefGoogle Scholar
Schöb, C, Michalet, R, Cavieres, LA, Pugnaire, FI, Brooker, RW, Butterfield, BJ, Cook, BJ, Kikvidze, Z, Lortie, CJ, Xiao, S, Al Hayek, P, Anthelme, F, Cranston, BH, García, MC, Le Bagousse-Pinguet, Y, Reid, AM, le Roux, PC, Lingua, E, Nyakatya, MJ, Touzard, B, Zhao, L and Callaway, RM (2014) A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist 202, 95105. https://doi.org/10.1111/nph.12641 CrossRefGoogle ScholarPubMed
Scholes, RJ and Archer, SR (1997) Tree–grass interactions in savannas. Annual Review of Ecology and Systematics 28, 517544. https://doi.org/10.1201/b10275-4 CrossRefGoogle Scholar
Sharpe, C (1992) Dynamics of savanna ecosystems. Journal of Vegetation Science 3, 293300. https://doi.org/10.2307/3235754 Google Scholar
Silva, DM, Loiola, PP, Rosatti, NB, Silva, IA, Cianciaruso, MV and Batalha, MA (2011) Os efeitos dos regimes de fogo sobre a vegetação de cerrado no Parque Nacional das Emas, GO: considerações para a conservação da diversidade. Biodiversidade Brasileira 1, 2639.Google Scholar
Soares, F, Cavalcante, L, Romero, N and Bandeira, MM (2016) Himatanthus Willd. ex Schult. (Apocynaceae): review. Pharmacognosy Reviews 10, 610. https://doi.org/10.4103/0973-7847.176549 CrossRefGoogle ScholarPubMed
Stachowicz, JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235246. https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2 CrossRefGoogle Scholar
Staver, AC, Archibald, S and Levin, SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230232. https://doi.org/10.1126/science.1210465 CrossRefGoogle ScholarPubMed
Strassburg, BBN, Brooks, T, Feltran-Barbieri, R, Iribarrem, A, Crouzeilles, R, Loyola, R, Latawiec, AE, Oliveira Filho, FJB, Scaramuzza, CADM, Scarano, FR, Soares-filho, B and Balmford, A (2017) Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution 1, 1315. https://doi.org/10.1038/s41559-017-0099 CrossRefGoogle ScholarPubMed
Tatsumi, S, Cadotte, MW and Mori, AS (2019) Individual-based models of community assembly: neighbourhood competition drives phylogenetic community structure. Journal of Ecology 107, 735746. https://doi.org/10.1111/1365-2745.13074 CrossRefGoogle Scholar
Tilman, D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. The Proceedings of the National Academy of Sciences 101, 1085410861. https://doi.org/10.1073/pnas.0403458101 CrossRefGoogle ScholarPubMed
Tokeshi, M (1993) Species abundance patterns and community structure. Advances in Ecological Research 24, 111186. https://doi.org/10.1016/S0065-2504(08)60042-2 CrossRefGoogle Scholar
Touboul, JD, Staver, AC and Levin, SA (2018) On the complex dynamics of savanna landscapes. The Proceedings of the National Academy of Sciences 115, E1336E1345. https://doi.org/10.1073/pnas.1712356115 CrossRefGoogle ScholarPubMed
Uhlmann, LAC, Oliveira, RJ and Santos, MG (2018) Efeitos alelopáticos de extratos vegetais de Hancornia speciosa Gomes na germinação de Lactuca sativa L. Revista Fitos 12, 149162. https://doi.org/10.5935/2446-4775.20180014 CrossRefGoogle Scholar
Vega-Álvarez, J, García-Rodríguez, JA and Cayuela, L (2019) Facilitation beyond species richness. Journal of Ecology 107, 722734. https://doi.org/10.1111/1365-2745.13072 CrossRefGoogle Scholar
Velazco, SJE, Villalobos, F, Galvão, F and De Marco Júnior, P (2019) A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Diversity and Distribution 25, 660673. https://doi.org/10.1111/ddi.12886 CrossRefGoogle Scholar
Veldman, JW, Buisson, E, Durigan, G, Fernandes, GW, Le Stradic, S, Mahy, G, Negreiros, D, Overbeck, GE, Veldman, RG, Zaloumis, NP, Putz, FE and Bond, WJ (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment 13, 154162. https://doi.org/10.1890/140270 CrossRefGoogle Scholar
Verdú, M, Jordano, P and Valiente-Banuet, A (2010) The phylogenetic structure of plant facilitation networks changes with competition. Journal of Ecology 98, 14541461. https://doi.org/10.1111/j.1365-2745.2010.01731.x CrossRefGoogle Scholar
Webb, CO, Ackerly, DD, McPeek, MA and Donoghue, MJ 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33, 475505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448 CrossRefGoogle Scholar
Whittaker, RH (1967) Gradient analysis of vegetation. Biological Reviews 42, 207–64. https://doi.org/https://doi.org/10.1111/j.1469-185X.1967.tb01419.x CrossRefGoogle ScholarPubMed
Whittaker, RH (1969) Evolution of diversity in plant communities. Brookhaven Symposia in Biology 27, 178195.Google Scholar
WWF – Word Wild Life (2019) Terrestrial Ecoregions of the World. Available at https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world.Google Scholar
Supplementary material: File

Chagas et al. supplementary material

Chagas et al. supplementary material 1

Download Chagas et al. supplementary material(File)
File 46.1 KB
Supplementary material: File

Chagas et al. supplementary material

Chagas et al. supplementary material 2

Download Chagas et al. supplementary material(File)
File 22.1 KB
Supplementary material: File

Chagas et al. supplementary material

Chagas et al. supplementary material 3

Download Chagas et al. supplementary material(File)
File 34.1 KB
Supplementary material: File

Chagas et al. supplementary material

Chagas et al. supplementary material 4

Download Chagas et al. supplementary material(File)
File 25.4 KB