Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T11:06:02.780Z Has data issue: false hasContentIssue false

Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador

Published online by Cambridge University Press:  01 March 2008

Jens Illig*
Affiliation:
Institut für Zoologie, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
Heinrich Schatz
Affiliation:
Institut für Ökologie, Leopold-Franzens-Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Stefan Scheu
Affiliation:
Institut für Zoologie, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
Mark Maraun
Affiliation:
Institut für Zoologie, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
*
1Corresponding author. Email: Jillig@gmx.de

Abstract:

The decomposition of litter of two tree species Graffenrieda emarginata (Melastomataceae), Purdiaea nutans (Cyrillaceae) and the mixture of both was investigated in a tropical montane rain forest in southern Ecuador at two different altitudes (1850 and 2280 m). The two litter types differed strongly in nitrogen concentration, suggesting that G. emarginata (1.21% N) decomposes faster than P. nutans (0.73% N). To study the effect of soil micro-arthropods on the decomposition process, litterbags with mesh-size of 48 μm, excluding soil micro-arthropods, and 1 mm, allowing colonization by soil micro-arthropods, were used. Litter mass loss was measured after 2, 6 and 12 mo exposure in the field; further, microbial biomass and micro-arthropod colonization of the litter were investigated after 2 and 12 mo. Generally, litter decomposed faster at 1850 m than at 2280 m (60% and 76% dry mass remaining after 12 mo, respectively); G. emarginata and mixed litter decomposed faster than P. nutans litter. After 12 mo mixed litter decomposed faster (65% of dry mass remaining) than both individual litter species (70% and 71% of dry mass of G. emarginata and P. nutans litter remaining, respectively) indicating that non-additive effects contributed to litter decomposition. Microbial biomass increased during the experiment and was higher at 1850 m than at 2280 m. The most abundant micro-arthropods in both litter types were oribatid mites followed by Collembola, Gamasina, Uropodina and Prostigmata + Astigmata. Micro-arthropods were generally more abundant at 1850 m suggesting higher biotic activity at lower altitudes. Soil micro-arthropods contributed little to decomposition processes indicating that litter decomposition is mainly due to micro-organisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALBERS, D., MIGGE, S., SCHAEFER, M. & SCHEU, S. 2004. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biology and Biochemistry 36:155164.CrossRefGoogle Scholar
ANDERSON, J. M. 1978. Inter- and intra-habitat relationships between woodland Cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32:341348.CrossRefGoogle ScholarPubMed
ANDERSON, J. M. & SWIFT, M. J. 1983. Decomposition in tropical forests. Pp. 287309 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds.). Tropical rainforests: ecology and management. Blackwell, Oxford.Google Scholar
ANDERSON, J. P. E. & DOMSCH, K. H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10:215221.CrossRefGoogle Scholar
BARDGETT, R. D. 2002. Causes and consequences of biological diversity in soil. Zoology 105;367374.CrossRefGoogle ScholarPubMed
BERG, B. & STAAF, H. 1981. Leaching accumulation and release of nitrogen in decomposing forest litter. Ecological Bulletins 33:163178.Google Scholar
CRAGG, R. G. & BARDGETT, R. D. 2001. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biology and Biochemistry 33:20732081.CrossRefGoogle Scholar
DOMES, K., SCHEU, S. & MARAUN, M. 2007. Resources and sex: soil re-colonization by sexual and parthenogenetic oribatid mites. Pedobiologia 51:111.CrossRefGoogle Scholar
EMCK, P. 2006. The climate of the Cordillera Real, southern Ecuador. Ph.D. thesis, FAU Erlangen, Erlangen.Google Scholar
FRANKLIN, E., HAYEK, T., FAGUNDES, E. P. & SILVA, L. L. 2004. Oribatid mite (Acari: Oribatida) contribution to decomposition dynamics of leaf litter in primary forest, second growth, and polyculture in the Central Amazon. Brazilian Journal of Biology 64:5972.CrossRefGoogle ScholarPubMed
GARTNER, T. B. & CARDON, Z. G. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104:230246.CrossRefGoogle Scholar
GONZALEZ, G. & SEASTEDT, T. R. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955964.CrossRefGoogle Scholar
HAGVAR, S. & KJONDAL, B. R. 1981. Succession, diversity and feeding-habits of microarthropods in decomposing birch leaves. Pedobiologia 22;385408.CrossRefGoogle Scholar
HANSEN, R. A. & COLEMAN, D. C. 1998. Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Applied Soil Ecology 9:1723.CrossRefGoogle Scholar
HENEGHAN, L., COLEMAN, D. C., ZOU, X., CROSSLEY, D. A. & HAINES, B. L. 1999. Soil microarthropod contributions to decomposition dynamics. Tropical-temperate comparisons of a single substrate. Ecology 80:18731882.Google Scholar
HOMEIER, J., DALITZ, H. & BRECKLE, S. W. 2002. Waldstruktur und Baumartendiversität im montanen Regenwald der Estation Cientifica San Francisco in Südecuador. Berichte der Reinhard-Tüxen-Gesellschaft 14:109118.Google Scholar
ILLIG, J., LANGEL, R., NORTON, R. A., SCHEU, S. & MARAUN, M. 2005. Where are the decomposers? Uncovering the soil food web of a tropical mountain rain forest in southern Ecuador using stable isotopes (15N). Journal of Tropical Ecology 21;589593.CrossRefGoogle Scholar
JONGMAN, R. H. G., TER BRAAK, C. J. F. & VAN TONGEREN, O. F. R. 1995. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
KEMPSON, D., LLOYD, M. & GHELARDI, R. 1963. A new extractor for woodland litter. Pedobiologia 3:121.CrossRefGoogle Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RÖDERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.CrossRefGoogle Scholar
LORANGER, G., PONGE, J. F., IMBERT, D. & LAVELLE, P. 2002. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biology and Fertility of Soils 35:247252.CrossRefGoogle Scholar
MARAUN, M. & SCHEU, S. 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374383.CrossRefGoogle Scholar
MARAUN, M., ILLIG, J., SANDMANN, D., KRASHEVSKA, V., NORTON, R. A. & SCHEU, S. 2008. Fauna: composition and function: soil fauna. In Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198, Springer, Berlin, in press.Google Scholar
MCNAUGHTON, S. J., OESTERHELD, M., FRANK, D. A. & WILLIAMS, K. J. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142144.CrossRefGoogle ScholarPubMed
NORTON, R. A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. Pp. 99135 in Hank, M. (ed.). Mites: ecological and evolutionary analyses of life history patterns. Chapman & Hall, New York.CrossRefGoogle Scholar
OLSON, D. M. 1994. The distribution of leaf litter invertebrates along a Neotropical altitudinal gradient. Journal of Tropical Ecology 10:129150.CrossRefGoogle Scholar
OLSON, J. S. 1963. Energy storage and the balance of producers and decomposers in terrestrial ecosystems. Ecology 42:322331.CrossRefGoogle Scholar
PETERSEN, H. & LUXTON, M. 1982. A comparative analysis of soil fauna populations and their role in decomposition process. Oikos 39:288388.CrossRefGoogle Scholar
RENKER, C., OTTO, P., SCHNEIDER, K., ZIMDARS, B., MARAUN, M. & BUSCOT, F. 2005. Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microbial Ecology 50:518528.CrossRefGoogle ScholarPubMed
RICHARDSON, B. A., RICHARDSON, M. R. & SOTO-ADAMES, F. N. 2005. Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Animal Ecology 74:926936.CrossRefGoogle Scholar
SAMPAIO, E. V. D. B., DALL'OLIO, A., NUNES, K. S. & DELEMOS, E. E. P. 1993. A model of litterfall, litter layer losses and mass-transfer in a humid tropical forest at Pernambuco Brazil. Journal of Tropical Ecology 9:291301.CrossRefGoogle Scholar
SCHÄDLER, M. & BRANDL, R. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology and Biochemistry 37:329337.CrossRefGoogle Scholar
SCHEU, S. 1992. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biology and Biochemistry 24:11131118.CrossRefGoogle Scholar
SCHEU, S., RUESS, L. & BONKOWSKI, M. 2005. Interactions between microorganisms and soil micro- and mesofauna. Pp. 253274 in Buscot, F. & Varma, A. (eds.) Soil biology, Volume 3: Microorganisms in soil: roles in genesis and functions. Springer, Berlin.CrossRefGoogle Scholar
SCHIMEL, J. P. & HÄTTENSCHWILER, S. 2007. Nitrogen transfer between decomposing leaves of different N status. Soil Biology and Biochemistry 39:14281436.CrossRefGoogle Scholar
SCHNEIDER, K. & MARAUN, M. 2005. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49:6167.CrossRefGoogle Scholar
SCHNEIDER, K., MIGGE, S., NORTON, R. A., SCHEU, S., LANGEL, R., REINEKING, A. & MARAUN, M. 2004. Trophic niche differentiation in oribatid mites (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry 36:17691774.CrossRefGoogle Scholar
SCHUUR, E. A. G. 2001. The effect of water on decomposition dynamics in mesic to wet Hawaiian mountain forests. Ecosystems 4:259273.CrossRefGoogle Scholar
SMITH, V. C. & BRADFORD, M. A. 2003. Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos 102;235242.CrossRefGoogle Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2006. The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian mountain forest. Plant and Soil 286:287299.CrossRefGoogle Scholar
SWIFT, M. J., HEAL, O. W. & ANDERSON, J. M. 1979. Decomposition in terrestrial ecosystems. Blackwell Science, Oxford. 372 pp.CrossRefGoogle Scholar
TANNER, E. V. J. 1981. The decomposition of leaf litter in Jamaican mountain rain forests. Journal of Ecology 69:263275.CrossRefGoogle Scholar
TAYLOR, B. R., PARKINSON, D. & PARSONS, W. F. J. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97104.CrossRefGoogle Scholar
VITOUSEK, P. M., TURNER, D. R., PARTON, W. J. & SANFORD, R. L. 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology 75:418429.CrossRefGoogle Scholar
WARDLE, D. A. 2002. Communities and ecosystems: linking the aboveground and belowground components. PrincetonUniversity Press, Princeton. 400 pp.Google Scholar
WARDLE, D. A., BONNER, K. I. & NICHOLSON, K. S. 1997. Biodiversity and plant litter – experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247258.CrossRefGoogle Scholar
WARDLE, D. A., NILSSON, M. C., ZACKRISSON, O. & GALLET, C. 2003. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry 35:827835.CrossRefGoogle Scholar
WARDLE, D. A., YEATES, G. W., BARKER, G. M. & BONNER, K. I. 2006. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry 38:10521062.CrossRefGoogle Scholar
WEERAKKODY, J. & PARKINSON, D. 2006. Leaf litter decomposition in an upper montane rainforest in Sri Lanka. Pedobiologia 50:387395.CrossRefGoogle Scholar
WILCKE, W., YASIN, S., VALAREZO, C. & ZECH, W. 2001. Change in water quality during the passage through a tropical mountain rain forest in Ecuador. Biogeochemistry 55:4572.CrossRefGoogle Scholar
WILCKE, W., YASIN, S., ABRAMOWSKI, U., VALAREZO, C. & ZECH, W. 2002. Nutrient storage and turnover in organic layers under tropical mountain rain forest in Ecuador. European Journal of Soil Science 53:1527.CrossRefGoogle Scholar
WISE, D. H. & SCHAEFER, M. 1994. Decomposition of leaf litter in a mull beech forest: comparison between canopy and herbaceous species. Pedobiologia 38:269288.CrossRefGoogle Scholar