Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T06:15:57.500Z Has data issue: false hasContentIssue false

Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change

Published online by Cambridge University Press:  26 July 2018

Robert J. Morley*
Affiliation:
Palynova Ltd, 1 Mow Fen Road, Littleport, Cambridgeshire CB6 1PY, UK, and Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Abstract:

The main phases of plant dispersal into, and out of the South-East Asian region are discussed in relation to plate tectonics and changing climates. The South-East Asian area was a backwater of angiosperm evolution until the collision of the Indian Plate with Asia during the early Cenozoic. The Late Cretaceous remains poorly understood, but the Paleocene topography was mountainous, and the climate was probably seasonally dry, with the result that frost-tolerant conifers were common in upland areas and a low-diversity East Asian aspect flora occurred at low altitudes. India's drift into the perhumid low latitudes during the Eocene brought opportunities for the dispersal into South-East Asia of diverse groups of megathermal angiosperms which originated in West Gondwana. They successfully dispersed and became established across the South-East Asian region, initially carried by wind or birds, beginning at about 49 Ma, and with a terrestrial connection after about 41 Ma. Many Paleocene lineages probably went extinct, but a few dispersed in the opposite direction into India. The Oligocene was a time of seasonally dry climates except along the eastern and southern seaboard of Sundaland, but with the collision of the Australian Plate with Sunda at the end of the Oligocene widespread perhumid conditions became established across the region. The uplift of the Himalaya, coinciding with the middle Miocene thermal maximum, created opportunities for South-East Asian evergreen taxa to disperse into north India, and then with the late Miocene strengthening of the Indian monsoon, seasonally dry conditions expanded across India and Indochina, resulting eventually in the disappearance of closed forest over much of the Indian peninsula. This drying affected Sunda, but it is thought unlikely that a ‘savanna’ corridor was present across Sunda during the Pleistocene. Some dispersals from Australasia occurred following its collision with Sunda and following the uplift of New Guinea and the islands of Wallacea, Gondwanan montane taxa also found their way into the region. Phases of uplift across the Sunda region created opportunities for allopatric speciation and further dispersal opportunities. There is abundant evidence to suggest that the Pleistocene refuge theory applies to the South-East Asian region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACHARYYA, S. K. 2007. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture. Journal of Asian Earth Sciences 29:229242.Google Scholar
ALI, J. R. & AITCHISON, J. C. 2008. Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews 88:145166.Google Scholar
ALLEN, R., CARTER, A., NAIMAN, Y., BANDOPADHYAY, P. C., CHAPMAN, H. C., BICKLE, M. J., GARZANTI, E., VEZZOLI, G., ANDÒ, S., FOSTER, G. L. & GERRING, C. 2007. New constraints on the sedimentation and uplift history of the Andaman-accretionary prism, South Andaman Island Nicobar. The Geological Society of America Special Paper 436:134.Google Scholar
AMIR, V., WITTS, D. & MORLEY, R. J. 2017. Structural re-evaluation of Central Kalimantan: unlocking the frontier area through satellite mapping and advanced biostratigraphy analysis. Pp. 9298 in Asia Petroleum Geoscience Conference and Exhibition (AGPCE) Proceedings, Kuala Lumpur, November 2017. AGPCE Committee, Kuala Lumpur.Google Scholar
ANSHARI, G., KERSHAW, A. P. & VAN DER KAARS, W. A. 2004. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. Quaternary Science 19:637655.Google Scholar
ASHTON, P. S. 2014. On the forests of tropical Asia. Lest the memory fade. Kew Publishing, Royal Botanic Gardens Kew, and Arnold Arboretum, Harvard University. 670 pp.Google Scholar
ASHTON, P. S. & GUNATILLEKE, C. V. S. 1987. New light on the plant geography of Ceylon. 1. Historical plant geography. Journal of Biogeography 14:249285.Google Scholar
AWASTHI, N. 1992. Changing patterns of vegetation succession through Siwalik succession. Palaeobotanist 40:312327.Google Scholar
BAKER, W., SAVOLAINEN, V., ASMUSSEN-LANGE, C. B., CHASE, M. W., DRANSFIELD, J., FOREST, F., HARLEY, M. M., UHL, M.W. & WILKINSON, M. 2009. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Systematic Biology 58:240256.Google Scholar
BARRETT, C. F., BACON, C. D., ANTOLELLI, A., CANO, A. & HOFMANN, T. 2016. An introduction to plant phylogenomics with a focus on palms. Botanical Journal of the Linnean Society 182:234255.Google Scholar
BARRETT, P. M. & WILLIS, K. J. 2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews 76:411447.Google Scholar
BECK, R. A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature 373:5558.Google Scholar
BELL, C. D, SOLTIS, D. E. & SOLTIS, P. S. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany 97:12961303.Google Scholar
BELSKY, C. Y., BOLTENHAGEN, E. & POTONIE, R. 1965. Sporae dispersae der Oberen Kreide von Gabun, Aequatoriales Afrika. Paläontologische Zeitschrift 39:7283.Google Scholar
BENDIKSBY, M., SCHUMACHER, T., GUSSAROVA, G., NAIS, J., MAT-SALLEH, K., SOFIYANTI, N., MADULID, D., SMITH, S. A. & BARKMAN, T. 2010. Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, morphological convergence and character displacement. Molecular Phylogenetics and Evolution 57:620633.Google Scholar
BERGER, B. A., KRIEBEL, R., SPALINK, D. & SYTSMA, K. J. 2016. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95:116136.Google Scholar
BIRD, M. I., TAYLOR, D. & HUNT, C. 2005. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quaternary Science Reviews 24:22282242.Google Scholar
BLASCO, F., BELLAN, M. F. & AIZPURU, M. 1996. A vegetation map of tropical continental Asia at scale 1:5 million. Journal of Vegetation Science 7:623634.Google Scholar
BLASCO, F., WHITMORE, T. C. & GERS, C. 2000. A framework for the worldwide comparison of tropical woody vegetation types. Biological Conservation 95:175189.Google Scholar
BODRIBB, T. J. & FIELD, T. S. 2007. Evolutionary significance of a flat-leaved Pinus in Vietnamese rainforest. New Phytologist 178:201209.Google Scholar
BOUCOT, A. J., XU, C., SCOTESE, C. R. & MORLEY, R. J. 2013. Phanerozoic paleoclimate. An atlas of lithologic indicators of climate Society of Economic Paleontologists and Mineralogists, Tulsa. 478 pp.Google Scholar
BREITFELD, H. T., GALIN, T., HALL, R., SEVASTJANOVA, I., FORSTER, M. & LISTER, G. 2014. Proto-South China Sea and South China Sea early history: a view from Sarawak. Pp. 6063 in Proceedings of the American Association of Petroleum Geologists workshop on the South China Sea, Kota Kinabalu, May 2014. American Association of Petroleum Geologists, Tulsa.Google Scholar
BRENNER, G. J. 1974. Palynostratigraphy of the Lower Cretaceous Gevar'am and Talme Yafe Formations in Gevar'am 2 well. Bulletin of the Geological Survey of Israel 59:127.Google Scholar
BRIGGS, J. C. 1995. Global biogeography. Developments in Palaeontology and Stratigraphy, 14. Elsevier, Amsterdam, 451 pp.Google Scholar
BRIGGS, J.C. 2003. The biogeographic and tectonic history of India. Journal of Biogeography 30:381388.Google Scholar
DE BRUYN, M., STELBRINK, B., MORLEY, R. J., HALL, R., CARVALHO, G. R., CANNON, C., VAN DEN BERGH, G., MEIJAARD, E., METCALFE, I., BOITANI, L., MAIORANO, L., SHOUP, R. & VON RINTELEN, T. 2014. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Systematic Biology 63:879901.Google Scholar
CANNON, C. H. & MANOS, P. S. 2002. Phylogeography of the Southeast Asian stone oaks (Lithocarpus). Journal of Biogeography 30:211226.Google Scholar
CANNON, C. H., MORLEY, R. J. & BUSH, A. B. G. 2009. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proceedings of the National Academy of Sciences, USA 106:1118811193.Google Scholar
CARTER, A., ROQUES, D., & BRISTOW, C. S. 2000. Denudation history of onshore central Vietnam: constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics 322:265277.Google Scholar
CHAMBERS, K. L., POINAR, G. & BUCKLEY, R. 2010. Tropidogyne, a new genus of Early Cretaceous eudicots (Angiospermae) from Burmese amber. Novon: A Journal for Botanical Nomenclature 20:2329.Google Scholar
CHAMPION, H. G. 1936. A preliminary survey of the forest types of India and Burma. Indian Forest Records (Silviculture) 1:263264.Google Scholar
CHANDLER, M. E. J. 1964. The Lower Tertiary Floras of Southern England; a summary and survey of findings in the light of recent botanical observations. British Museum (Natural History), London. 151 pp.Google Scholar
CHATTERJEE, D. 1939. Studies on the endemic flora of India and Burma. Journal of the Royal Asiatic Society of Bengal (Science) 5:1967.Google Scholar
CHATTERJEE, S. & BAJPAI, S. 2016. India's northward drift from Gondwana to Asia during the Late Cretaceous-Eocene. Proceedings of the Indian National Science Academy 82:479487.Google Scholar
CHATTERJEE, S. & SCOTESE, C. R., 1999. The breakup of Gondwana and the evolution and biogeography of the Indian Plate. Proceedings of the Indian National Academy of Sciences 65:397425.Google Scholar
CHATTERJEE, S., GOSWAMI, A. & SCOTESE, C. R. 2013. The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research 23:238267.Google Scholar
COLE, J. M., ABDELRAHIM, O. B., HUNTER, A. W., SCHRANK, E. & MOHD SUHAILI BIN, ISMAIL 2017. Late Cretaceous spore-pollen zonation of the Central African Rift System (CARS), Kaikang Trough, Muglad Basin, South Sudan: angiosperm spread and links to the Elaterates Province. Palynology 41:547578.Google Scholar
COLINVAUX, P. A., IRION, G., RASANEN, M. E., BUSH, M. B. & NUNES DE MELLO, J. A. S. 2001. A paradigm to be discarded: geological and palaeoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16:609646.Google Scholar
COLLINSON, M. E. 1983. Fossil plants of the London Clay. Palaeontological Association Field Guides to Fossils, No 1. Palaeontological Association, London. 121 pp.Google Scholar
COTTAM, M. A., HALL, R., SPERBER, C. & ARMSTRONG, R. 2010. Pulsed emplacement of the Mount Kinabalu Granite, North Borneo. Journal of the Geological Society of London 167:4960.Google Scholar
COUTAND, I., BARRIER, L., GOVIN, G., GRUJIC, D., HOORN, C., DUPONT-NIVET, G. & NAJMAN, Y. 2016. Late Miocene-Pleistocene evolution of India-Eurasia convergence partitioning between the Bhutan Himalaya and the Shillong Plateau: new evidences from foreland basin deposits along the Dungsam Chu section, eastern Bhutan. Tectonics 35:135.Google Scholar
COUVREUR, T. L. P. & BAKER, W. J. 2013. Tropical rain forest evolution: palms as a model group. BMC Biology 2013:1148.Google Scholar
CRANE, P. R. 1987. Vegetational consequences of the angiosperm diversification. Pp. 105144 in Friis, E. M., Chaloner, W. G. & Crane, P. R. (eds). The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
CRUICKSHANK, R. D. & KO, K. 2003. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. Journal of Asian Earth Sciences 21:441455.Google Scholar
CURIALE, J. A., KYI, P., COLLINS, I. D., DIN, A., NYEIN, K., NYUNT, M. & STUART, C. J. 1994. The central Myanmar (Burma) oil family - composition and implications for source. Organic Geochemistry 22:237255.Google Scholar
DAM, R. A. C., FLUIN, J., SUPARAN, P. & VAN DER KAARS, S. 2001. Palaeoenvironmental developments in the Lake Tonada area, (N Sulawesi, Indonesia) since 33000 yr B.P. Palaeogeography, Palaeoclimatology, Palaeoecology 171:147183.Google Scholar
DANSERAU, P. 1957. Biogeography, an ecological perspective. Ronald Press, New York. 394 pp.Google Scholar
DAUBENMIRE, R. 1968. Plant communities: a textbook of synecology. Harper and Row, New York. 300 pp.Google Scholar
DAVIS, C. C., WEBB, C. O., WURDACK, K. J., JARAMILLO, C. A. & DONOGHUE, M. J. 2005. Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. American Naturalist 165:E36–E65.Google Scholar
DETTMANN, M. E. 1994. Cretaceous vegetation: the microfossil record. Pp. 143170 in Hill., R. S. (ed.). History of Australian vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge.Google Scholar
DING, L., SPICER, R. A., YANG, J., XU, Q., CAI, F., LI, S., LAI, Q., WANG, H., SPICER, T. E. V., YUE, Y., SHUKLA, A., SRIVASTAVA, G., ALI KHAN, M., BERA, S & MEHROTRA, R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45:215218.Google Scholar
DOMMAIN, R., COUWENBERG, J., GLASER, P. H., JOOSTEN, H., NYOMAN, I. & SURYADIPUTRA, N. 2014. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews 97:132.Google Scholar
DOYLE, J. A. 2012. Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth Planetary Science 40:301326.Google Scholar
DOYLE, J. A., SAUQUET, H., SCHARASCHKIN, T. & LE THOMASY, A. 2004. Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). International Journal of Plant Sciences 165:S55–S67.Google Scholar
DUPONT-NIVET, G., HOORN, C. & KONERT, M. 2008. Tibetan uplift prior to the Eocene–Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology 36:987990.Google Scholar
DUTTA, S., TRIPATHI, S. M., MALLICK, M., MATHEWS, R. P., GREENWOOD, P. F., RAO, M. R. & SUMMONS, E. 2011. Eocene out-of-India dispersal of Asian dipterocarps. Review of Palaeobotany and Palynology 166:6368.Google Scholar
FENG, X., TANG, B., KODRUL, T. M. & JIN, J. 2013. Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications. American Journal of Botany 100:574581.Google Scholar
FERNANDO, P., VIDYA, T. N. C., PAYNE, J., STUEWE, M., DAVISON, G., ALFRED, R. J., ANDAU, P., BOSI, E., KILBOURN, A. & MELNICK, D.J. 2003. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLOS Biology 1:e6.Google Scholar
FINE, P. V. A., & REE, R. H. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. American Naturalist 168:796804.Google Scholar
FLENLEY, J. R. 1984. Late Quaternary changes of vegetation and climate in the Malesian mountains. Erdwissenschaftliche Forschung 18:261267.Google Scholar
FOLIE, A., RANA, R. S., ROSE, K. D., SAHNI, A., KUMAR, K., SINGH, L. & SMITH, T. 2013. Early Eocene frogs from Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 58:511524.Google Scholar
FYHN, M. B. W., GREEN, P. F., BERGMAN, S. C., ITTERBEECK, J. VAN, TRI, T. V., DIEN, P. T., ABATZIS, J., THOMSEN, T. B., CHEA, S., PEDERSEN, S. A. C., MAI, L. C., TUAN, H. A. & NIELSEN, L. H. 2016. Cenozoic deformation and exhumation of the Kampot Fold Belt and implications for south Indochina tectonics. Journal of Geophysical Research, Solid Earth 121:52785307.Google Scholar
GAMAGE, D. T., DE SILVA, M., INOMATA, N., YAMAZAKI, T. & SZMIDT, A. E. 2006. Comprehensive molecular phylogeny of the sub-family Dipterocarpoideae (Dipterocarpaceae) based on chloroplast DN sequences. Genes and Genetic Systems 81:112.Google Scholar
GAUSSEN, F. 1978. Les cartes Internationales de tapis vegetale et es conditions ecologiques. Institute Francais de Pondicherry, Pondicherry.Google Scholar
GENTRY, A. H. 1992. Tropical forest biodiversity: distribution patterns and their conservation significance. Oikos 63:1928.Google Scholar
GOOD, R. 1962. On the geographical relationships of the angiosperm flora of New Guinea. Bulletin of the British Museum (Natural History) Botany 12:205226.Google Scholar
GUBELI, A. A., HOCHULI, P. A. & WILDI, W. 1984. Lower Cretaceous turbiditic sediments from the Rif chain (northern Morocco) – palynology, stratigraphy and palaeogeographic setting. Geologische Rundschau 73:10811114.Google Scholar
GULERIA, J. S. 1992. Neogene vegetation of peninsular India. Palaeobotanist 4:285331.Google Scholar
GUNATILLEKE, N., GUNATILLEKE, S. & ASHTON, P. S. 2017. South-west Sri Lanka: a floristic refugium in South Asia. Ceylon Journal of Science 46:6578.Google Scholar
GUPTA, S., MITRA, S., BERA, S. & BANERJEE, M. 2003. Record of palynomorphs comparable to Lower Tertiary palynoflora and reworked microfossils from subsurface sediments of Ganga Basin, India. Gondwana Geological Magazine Special Volume 6:207216.Google Scholar
HAFFER, J. 1987. Biogeography and Quaternary history in tropical America. Pp. 118 in Whitmore, T.C. & Prance, G.T (eds). Biogeography and Quaternary history in tropical America. Clarendon Press, Oxford.Google Scholar
HALL, R. 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. Pp. 99131 in Hall, R. & Holloway, J. (eds). Biogeography and geological evolution in SE Asia. Bukhuys Publishers, Amsterdam.Google Scholar
HALL, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20:353431.Google Scholar
HALL, R. 2009. Southeast Asia's changing palaeogeography. Blumea 54:148161.Google Scholar
HALL, R. 2012a. Late Jurassic to Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571:141.Google Scholar
HALL, R. 2012b. Sundaland and Wallacea, geology, plate tectonics and palaeogeography. Pp. 3278 in Gower, D., Johnson, K., Richardson, J., Rosen, B., Rüber, L. & Williams, S. (eds). Biotic evolution and environmental change in Southeast Asia. Cambridge University Press, Cambridge.Google Scholar
HANDIQUE, G. K. 1993. Stratigraphy, depositional environment and hydrocarbon potential of Upper Assam Basin, India. Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Palaeontology. Chiang Mai, Thailand, vol. 1:151169.Google Scholar
HEANEY, L. R. 1991. A synopsis of climatic and vegetational change in Southeast Asia. Climatic Change 19:5361.Google Scholar
HECKENHAUER, J., SAMUEL, R., ASHTON, P. S., TURNER, B., BARFUSS, M. H. J., TAE-SOO, JANG, TEMSCH, E. M., MCCANN, J., ABU SALIM, K., ACHALA, A. M., ATTANAYAKE, S. & CHASE, M. 2017. Phylogenetic analyses of plastid DNA suggest a different interpretation of morphological evolution than those used as the basis for previous classifications of Dipterocarpaceae (Malvales). Botanical Journal of the Linnaean Society 185:126.Google Scholar
HERMAN, A. B., SPICER, R. A., ALEKSANDROVA, G. N., YANG, J., KODRUL, T. M., MASLOVA, N. P., SPICER, T. E. V., CHEN, G. & JIN, J. H. 2017. Eocene–early Oligocene climate and vegetation change in southern China: evidence from the Maoming Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 479:126137.Google Scholar
HICKEY, L. J. & DOYLE, J. A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review 43:1104.Google Scholar
HOOGHIEMSTRA, H. 1984. Vegetational and climatic history of the High Plain of Bogota, Colombia: a continuous record of the last 3.5 million years. Dissertationes Botanicae. Cramer, J., Vaduz. 368 pp.Google Scholar
HOORN, C., OHJA, T. & QUADE, J. 2000. Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeography, Palaeoclimatology, Palaeoecology 163:133161.Google Scholar
HOORN, C., WESSELINGH, F. P., TER STEEGE, H., BERMUDEZ, M. A., MORA, A., SEVINK, J., SANMARTÍN, I., SANCHEZ-MESEGUER, A., ANDERSON, C. L., FIGUEIREDO, J. P., JARAMILLO, C., RIFF, D., NEGRI, F. R., HOOGHIEMSTRA, H., LUNDBERG, J., STADLER, T., SÄRKINEN, T. & ANTONELLI, A. 2010. Amazonia Through Time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927931.Google Scholar
HUFFMAN, O. F. 2003. Geological context and age of the Perning/Mojokerto Homo erectus, East Java. Journal of Human Evolution 40:353362.Google Scholar
HUFFMAN, O. F. & ZAIM, Y. 2003. Mojokerto Delta, East Jawa: paleoenvironment of Homo modjokertensis – first results. Journal of Mineral Technology 10:132.Google Scholar
HUNT, C. O., GILBERTSON, D. D. & RUSHWORTH, G. A. 2012. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quaternary Science Reviews 37:6180.Google Scholar
JACQUES, F. M. B., SHI, G., SUA, T. & ZHOU, Z. 2015. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Review of Palaeobotany and Palynology 216:7691.Google Scholar
JAIZAN HARDI MD JAIS 1997. Oligocene to Pliocene quantitative stratigraphic palynology of the Southern Malay Basin, offshore Malaysia. Unpublished PhD thesis Sheffield University. 321 pp. & 98 plates.Google Scholar
JARAMILLO, C., HOORN, C., SILVA, S. A. F., LEITE, F., HERRERA, F., QUIROZ, L., DINO, R. & ANTONIOLI, L. 2010. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record. Pp. 317334 in Hoorn, C. & Wesselingh, F. P. (eds). Amazonia, landscape and species evolution: a look into the past. Blackwell Publishing, Oxford.Google Scholar
JARDINE, S. & MAGLOIRE, L. 1965. Palynologie et stratigraphie du cretace des bassins du Senegal et de Cote d'Ivoire. Memoires Bureau Recherche Geolologie. Mineralogie 32:187245.Google Scholar
KAPUR, V. V., DAS, D. B., BAJPAI, S. & PRASAD, G. V. R. 2017. First mammal of Gondwanan lineage in the early Eocene of India. Comptes Rendus Palevol 16:721737.Google Scholar
KERSHAW, A. P., PENNY, D., VAN DER KAARS, S., ANSHARI, G. & THANOTHERAMPILLAI, A. 2001. Vegetation and climate in lowland Southeast Asia at the last glacial maximum. Pp. 227338 in Metcalfe, I., Smith, J., Morwood, M. & Davidson, I. (eds). Faunal and floral migrations and evolution in SE Asia-Australasia. Balkema, Lisse.Google Scholar
KERSHAW, P., VAN DER KAARS, S., MOSS, P. & WANG, K. 2002. Quaternary records of vegetation, biomass burning, climate and possible human impact in the Indonesian-northern Australian region. Pp. 97118 in Kershaw, A. P., David, B., Tapper, N., Penny, D. & Brown, J. (eds). Bridging Wallace's Line: the environmental and cultural history and dynamics of the SE Asian–Australian region. Advances in Geoecology 34, Catena Verlag, Reiskirchen.Google Scholar
KHAN, M. A., SPICER, R. A., SPICER, T. E. V. & BERA, S. 2016. Occurrence of Shorea Roxburgh ex C. F. Gaertner (Dipterocarpaceae) in the Neogene Siwalik forests of eastern Himalaya and its biogeography during the Cenozoic of Southeast Asia. Review of Palaeobotany and Palynology 233:236254.Google Scholar
KHAN, S. D., WALKER, D. J., HALL, S. A., BURKE, K. C., SHAH, M. T. & STOCKLI, L. 2009. Did Kohistan/Ladakh island arc collide first with India? Geological Society of America Bulletin 121:366384.Google Scholar
KLAUS, S., MORLEY, R. J., PLATH, M., YA-PING, ZHANG & JIA-TANG, LI 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications 7:12132.Google Scholar
KROON, D., STEENS, T. & TROELSTRA, S. R. 1991. Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers. Proceedings of the Ocean Drilling Program, Scientific Results 117:257263.Google Scholar
LEGRAND, J., YAMADA, T. & NISHIDA, H. 2014. Palynofloras from the upper Barremian-Aptian Nishihiro Formation (Outer Zone of southwest Japan) and the appearance of angiosperms in Japan. Journal of Plant Research 127:221232.Google Scholar
LELONO, E. B. 2000. Palynological studies of the Eocene Nanggulan Formation of Central Java. PhD Thesis, Royal Holloway, University of London. 427 pp.Google Scholar
LELONO, E. B. 2017. Palynology of Indonesia. LIPI, Jakarta. 99 pp.Google Scholar
LELONO, E. B. & MORLEY, R. J. 2010. Oligocene palynological succession from the East Java Sea. Pp. 333345 in Hall, R. & Wilson, M. (eds). Southeast Asian gateway evolution. Special Publication of the Geological Society of London 355. The Geological Society, London.Google Scholar
LICHT, A., BOURA, A., DE FRANCESCHI, D., DUCROCQ, S., AUNG NAING, SOE & JAEGER, J. J. 2014. Fossil woods from the late middle Eocene Pondaung Formation, Myanmar. Review of Palaeobotany and Palynology 202:2946.Google Scholar
LUNT, P. 2013. The sedimentary geology of Java. Indonesian Petroleum Association, Jakarta. 347 pp.Google Scholar
MANCHESTER, S. R., KAPGATE, D. K. & WEN, J. 2013. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. American Journal of Botany 100:18491859.Google Scholar
MAURIN, T. & RANGIN, C. 2009. Structure and kinematics of the Indo-Burmese Wedge: recent and fast growth of the outer wedge. Tectonics 28:TC2010. doi: 10.1029/2008TC002276.Google Scholar
MAYR, G., RANA, R. S., ROSE, K. D., SAHNI, A., KUMAR, K., SINGH, L. & SMITH, T. 2010. Quercypsitta-like birds from the early Eocene of India (Aves, Psittaciformes). Journal of Vertebrate Paleontology 30:467478.Google Scholar
MEDWAY, LORD. 1972. The Quaternary mammals of Malesia: a review. Pp. 3398 in Ashton, P. S. & Ashton, M. H. (eds). The Quaternary Era in Malesia. Miscellaneous Series 13. Geography Department University of Hull, Hull.Google Scholar
MEIJAARD, E. 2003. Mammals of Southeast Asian islands and their Late Pleistocene environments. Journal of Biogeography 30:12451257.Google Scholar
MEIJER, W. & WITHINGTON, W. A. 1981. A map of vegetation and land use in Sumatra. Indonesia Circle, School of Oriental & African Studies Newsletter 9:24:2937.Google Scholar
MERCKX, V. S. F. T., HENDRIKS, K. P., BEENTJES, K. K., MENNES, C. B., BECKING, L. T., PEIJNENBURG, K. T. C. A., AFENDY, A., ARUMUGAM, N., DE BOER, H., BIUN, A., BUANG, M. M., CHEN, P.-P., CHUNG, A. Y. C., DOW, R., FEIJEN, F. A. A., FEIJEN, H., FEIJEN-VAN SOEST, C., GEML, J., GEURTS, R., GRAVENDEEL, B., HOVENKAMP, P., IMBUN, P., IPOR, I., JANSSENS, S. B., JOCQUE, M., KAPPES, H., KHOO, E., KOOMEN, P., LENS, F., MAJAPUN, R. J., MORGADOL, N., NEUPANE, S., NIESER, N., PEREIRA, J. T., RAHMAN, H., SABRAN, S., SAWANG, A., SCHWALLIER, R. M., PHYAU-SOON, SHIM, SMIT, H., SOL, N., SPAIT, M., STECH, M., STOKVIS, F., SUGAU, J. B., SULEIMAN, M., SUMAIL, S., THOMAS, D. C., VAN TOL, J., TUH, F. Y. Y., YAHYA, B. Y., NAIS, J., REPIN, R., LAKIM, M. & SCHILTHUIZEN, M. 2015. Evolution of endemism on a young tropical mountain. Nature 524:347350.Google Scholar
MILLER, M. J., BERMINGHAM, E., KLICKA, J., ESCALANTE, P., RAPOSO DO AMARAL, F. S., WEIR, J. T. & WINKER, K. 2008. Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher. Proceedings of the Royal Society B 275:11331142.Google Scholar
MISRA, C. M. & KAPOOR, P. N. 1994. Palaeocene to Middle Miocene palynoflora, age and palaeoenvironment of the Jwalamukhi-B, Himalayan Foothills. Pp. 147160 in Biswas, S. K., Dave, A., Garg, P., Pandey, J., Maithani, A. & Thomas, N. J. (eds). Proceedings of the Second Seminar on Petroliferous basins of India Vol. 3. Himalayan Foothills and Gondwana Basins, geoscientific studies and hydrocarbon exploration techniques. Indian Petroleum Publishers, Dehradun.Google Scholar
MONGA, P., KUMAR, M., PRASAD, V. & JOSHI, Y. 2015. Palynostratigraphy, palynofacies and depositional environment of a lignite-bearing succession at Surkha Mine, Cambay Basin, north-western India. Acta Palaeobotanica 55:183207.Google Scholar
MORE, S., PARUYA, D., TARAL, S., CHAKRABORTY, T. & BERA, S. 2016. Depositional environment of Mio-Pliocene Siwalik sedimentary strata from the Darjeeling Himalayan Foothills, India: a palynological approach. PLoS ONE 11:e0150168.Google Scholar
MORLEY, R. J. 1981. Development and vegetation dynamics of a lowland ombrogenous peat swamp in Kalimantan Tengah, Indonesia. Journal of Biogeography 8:383404.Google Scholar
MORLEY, R. J. 1998. Palynological evidence for Tertiary plant dispersals in the Southeast Asian region in relation to plate tectonics and climate. Pp. 211234 in Hall, R. & Holloway, J. D. (eds). Biogeography and geological evolution of SE Asia. Backhuys, Leiden.Google Scholar
MORLEY, R. J. 2000. Origin and evolution of tropical rain forests, Wiley, Chichester. 362 pp.Google Scholar
MORLEY, R. J. 2001a. Why are there so many primitive angiosperms in the rain forests of the Far East? Pp. 185200 in Metcalfe, I., Smith, J. M. B., Morwood, M. & Davidson, I. (eds). Faunal and floral migrations and evolution in SE Asia-Australia. Balkema, Lisse.Google Scholar
MORLEY, R. J. 2001b. Tertiary vegetational history of Southeast Asia, with emphasis on biogeographical relationships with Australasia. Pp. 2948 in Kershaw, A. P., Bruno, D., Tapper, N., Penny, D. & Brown, J. (eds). Bridging Wallace's Line: the environmental and cultural history and dynamic of the Australian – Southeast Asian Region . Advances in Geoecology 34. Catena Verlag, Reiskirchen.Google Scholar
MORLEY, R. J. 2003. Interplate dispersal routes for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6:520.Google Scholar
MORLEY, R. J. 2010. Palaeoecology of tropical podocarps. Smithsonian Contributions to Botany 95:2141.Google Scholar
MORLEY, R. J. 2012. A review of the Cenozoic palaeoclimate history of Southeast Asia. Pp. 79114 in Gower, D. J., Johnson, K. G., Richardson, J. E., Rosen, B. R., Ruber, L. & Williams, S. T. (eds). Biotic evolution and environmental change in SE Asia. Cambridge University Press, Cambridge.Google Scholar
MORLEY, R. J. 2014. Rifting and mountain building across Sundaland, a palynological and sequence biostratigraphic perspective. In Proceedings of the Indonesian Petroleum Association Thirty-Eighth Annual Convention & Exhibition, Jakarta, Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J. 2018. The complex history of mountain building and the establishment of mountain biota in Southeast Asia and Eastern Indonesia. Pp. 475493 in Hoorn, C., Perrigo, A. & Antonelli, A. (eds). Mountains, climate and diversity. Wiley-Blackwell, Oxford.Google Scholar
MORLEY, R. J. & FLENLEY, J. R. 1987. Late Cainozoic vegetational and environmental changes in the Malay Archipelago. Pp. 5059 in Whitmore, T. C. (ed.). Biogeographical evolution of the Malay Archipelago. Oxford Monographs on Biogeography 4. Oxford Scientific Publications, Oxford.Google Scholar
MORLEY, R. J. & MORLEY, H. P. 2010. Neogene climate history of the Makassar Straits with emphasis on the Attaka Field. In Proceedings of the Indonesian Petroleum Association 34th annual convention, Jakarta, Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J. & MORLEY, H. P. 2013. Mid Cenozoic freshwater wetlands of the Sunda region. Journal of Limnology 72:1835.Google Scholar
MORLEY, R. J., MORLEY, H. P. & RESTREPO-PACE, P. 2003. Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived mid Tertiary climate changes. In: Proceedings of the Indonesian Petroleum Association 29th Annual Convention & Exhibition, Jakarta, Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J., MORLEY, H. P., WONDERS, A. A. H. W., SUKARNO, & VAN DER KAARS, S. 2004. Biostratigraphy of Modern (Holocene and Late Pleistocene) sediment cores from Makassar Straits. In Deepwater and Frontier Exploration in Asia & Australasia Proceedings. Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J., SALVADOR, P., CHALLIS, M. L., MORRIS, W. R. & ADYAKSAWAN, I. R. 2007. Sequence biostratigraphic evaluation of the North Belut Field, West Natuna Basin. In Proceedings of the Indonesian Petroleum Association 31st annual convention, Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J., SWIECICKI, T. & PHAM, D. D. T. 2011. A sequence stratigraphic framework for the Sunda region, based on integration of biostratigraphic, lithological and seismic data from Nam Con Son Basin, Vietnam. In Proceedings of the Indonesian Petroleum Association 35th Annual Convention & Exhibition, Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J, MORLEY, H. P. & SWIECICKI, T. 2016. Mio-Pliocene palaeogeography, uplands and river systems of the Sunda region based on mapping within a framework of VIM depositional cycles. In Proceedings of the Indonesian Petroleum Association 41st annual convention. Indonesian Petroleum Association, Jakarta.Google Scholar
MORLEY, R. J., MORLEY, H. P. & SWIECICKI, T. 2017. Constructing Neogene palaeogeographic maps for the Sunda region. Pp. 14 in Session 7, SEAPEX Exploration conference, Singapore, April 2017. Southeast Asian Petroleum Exploration Society, Singapore.Google Scholar
MOYERSOEN, B. 2006. Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytologist 172:753762.Google Scholar
MUELLNER, A. N., SAVOLAINEN, V., SAMUEL, R., & CHASE, M. W. 2006. The mahogany family “out of Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molecular Phylogenetics and Evolution 40:236250.Google Scholar
MULLER, J. 1968. Palynology of the Pedawan and Plateau Sandstone formations (Cretaceous – Eocene) in Sarawak, Malaysia. Micropalaeontology 14:137.Google Scholar
MULLER, J. 1970. Palynological evidence on early differentiation of angiosperms. Biological Reviews of the Cambridge Philosophical Society 45:417450.Google Scholar
MULLER, J. 1972. Palynological evidence for change in geomorphology, climate and vegetation in the Mio-Pliocene of Malesia. Pp. 634 in Ashton, P.S. & Ashton, M. (eds). The Quaternary Era in Malesia. Miscellaneous. Series 13. Geography Department, University of Hull, Hull.Google Scholar
NUGRAHA, A. M. S. & HALL, R. 2017. Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 490:191209.Google Scholar
O'SHEA, N., BETTIS, E. A., ZAIM, Y., RIZAL, Y., ASWAN, A., GUNNELL, G. F., ZONNEVELD, J.-P. & CIOCHON, R. L. 2015. Paleoenvironmental conditions in the late Paleogene, Sumatra, Indonesia. Journal of Asian Earth Sciences 111:384394.Google Scholar
PATNAIK, R. 2015. Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: an appraisal in the light of new data. Quaternary International 371:232243.Google Scholar
PAUL, S., SHARMA, I., SINGH, B. D., SARASWATI, P. K. & DUTTA, S. 2015. Early Eocene equatorial vegetation and depositional environment: biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. International Journal of Coal Geology 149:7792.Google Scholar
PHAN KE, LOC, PHAM VAN, THE, PHAN KE, LONG, REGALDO, J., AVERANYO, L. V. & MASLIN, B. 2017. Native conifers of Vietnam – a review. Pakistan Journal of Botany 49:20372068.Google Scholar
POINAR, G. O. & CHAMBERS, K. L. 2017. Tropidogyne pentaptera, sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity 10:135140.Google Scholar
POOLE, I. M. 1993. A dipterocarpaceous twig from the Eocene London Clay Formation of southern England. Special Papers in Palaeontology 49:155163.Google Scholar
PRANCE, G. T. (ed.) 1979. Biological diversification in the tropics. Columbia University Press, New York. 714 pp.Google Scholar
PRASAD, V., FAROOQUI, A, TRIPATHI, S. K. M., GARG, R. & THAKUR, R. B. 2009. Evidence of Late Palaeocene–Early Eocene equatorial rain forest refugia in southern Western Ghats India. Journal of Bioscience 34:777797.Google Scholar
QUADE, J. J., CERLING, T. E. & BOWMAN, J. R. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163166.Google Scholar
RACEY, A., GOODALL, J. G. S., LOVE, M. A., POLACHAN, S. & JONES, P. D. 1994. New age data for the Mesozoic Khorat Group of Northeast Thailand. Pp. 245252 in Angsuwathana, P., Wongwanich, T., Tansathien, W., Wongsomsak, S. & Tulyatid, J. (eds). Proceedings of the International Symposium on Stratigraphic Correlation of Southeast Asia. Department of Mineral Resources, Bangkok.Google Scholar
RAES, N., CANNON, C. H., HIJMANS, J., PIESSENSE, T., SAW, L. G., VAN WELZEN, P. C. & SLIK, J. W. F. 2014. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima. Proceedings of the National Academy of Sciences USA 111:67906795.Google Scholar
RAGE, J. C., CAPPETTA, H., HARTENBERGER, J. L., JAEGER, J. J., SUDRE, J., VIANEY-LIAUD, M., KUMAR, K., PRASAD, G. V. R. & SAHNI, A. 1995. Collision age. Nature 375:286.Google Scholar
RAGE, J. C., FOLIE, A., RANA, R. S., SINGH, H., ROSE, K. D. & SMITH, T. 2008. A diverse snake fauna from the early Eocene of Vastan Lignite Mine, at Gujarat, India. Acta Palaeontologica Polonica 53:391403.Google Scholar
RAMANUJAM, C. G. K., REDDY, P. R. & RAMAKRISHNA, H. 1997. Dicolpate palm pollen from the Neogene deposits of Godavari-Krishna Basin, A.P. Journal of Palynology 33:129136.Google Scholar
RAVEN, P. H. & AXELROD, D. I. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61:539673.Google Scholar
REID, E. M. & CHANDLER, M. E. J. 1933. The Flora of the London Clay. British Museum (Natural History), London. 561 pp.Google Scholar
RESTREPO-PACE, P. A., DALRYMPLE, M. & MORLEY, R. J. 2015. Finding new exploration targets in ‘mature’ petroleum basins offshore Thailand. American Association of Petroleum Geologists, Search and Discovery Article #10696.Google Scholar
RICHARDS, P. W. 1996. The tropical rain forest. (Second edition). Cambridge University Press, Cambridge. 575 pp.Google Scholar
RICHARDSON, J. E., CHATROU, L. W., MOLS, J. B., ERKENS, R. H. L. & PIRIE, D. M. 2004. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society of London B 359:14951508.Google Scholar
RICHARDSON, J. E., COSTION, C. M. & MUELLNER, A. N. 2012. The Malesian floristic interchange: plant migration patterns across Wallace's Line. Pp. 138163 in Gower, D. J., Johnson, K. G., Richardson, J. E., Rosen, B. R., Ruber, L. & Williams, S. T. (eds). Biotic evolution and environmental change in Southeast Asia. Cambridge University Press, Cambridge.Google Scholar
RICHARDSON, J. E., BAKAR, A. M., TOSH, J., ARMSTRONG, K., SMEDMARK, J., ANDERBERG, A. A., SLIK, F. & WILKIE, P. 2013. The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae). Botanical Journal of the Linnean Society 174:130140.Google Scholar
ROSE, K. D., RANA, R. S., SAHNI, A., KUMAR, K., MISSIAEN, P., SINGH, L. & SMITH, T. 2009. Early Eocene primates from Gujarat, India. Journal of Human Evolution 56:366404.Google Scholar
ROSE, D. R., HOLBROOK, L. T., RANA, R. S., KUMAR, K., JONES, K. E., AHRENS, H. E., MISSIAEN, P., SAHNI, A. & SMITH, T. 2014. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Communications 5:5570.Google Scholar
RUST, J., SINGH, H., RANA, R.S., MCCANN, T., SINGH, L., ANDERSON, K., SARKAR, N., NASCIMBENE, P. C., STEBNER, F. & THOMAS, J. C. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences USA 107:1836018365.Google Scholar
SAMANT, B. & PHADARE, N. R. 1997. Stratigraphic palynoflora of the Early Eocene Rajpardi lignite, Gujarat and the lower age limit of the Tarkeshwar Formation of South Cambay Basin, India. Palaeontographica B 245:1108.Google Scholar
SCHÖNENBERGER, J. & FRIIS, E. M. 2001. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. American Journal of Botany 88:467480.Google Scholar
SEPULCHRE, P., JOLLY, D., DUCROCQ, S., CHAIMANEE, Y. & JAEGER, J. J. 2010. Mid-Tertiary palaeoenvironments in Thailand: pollen evidences. Climate of the Past Discussions 6: 461473.Google Scholar
SHELDON, F. H., LIM, H. C. & MOYLE, R. G. 2015. Return to the Malay Archipelago: the biogeography of Sundaic rainforest birds. Journal of Ornithology 15 Supplement 1:91113.Google Scholar
SHI, G., JACQUES, F. M. B. & LI, H. 2014. Winged fruits of Shorea (Dipterocarpaceae) from the Miocene of Southeast China: evidence for the northward extension of dipterocarps during the mid-Miocene climatic optimum. Review of Palaeobotany and Palynology 200:97107.Google Scholar
SHUKLA, A., MEHROTRA, R. C. & GULERIA, J. S. 2013. Emergence and extinction of Dipterocarpaceae in western India with reference to climate change: fossil wood evidences. Journal of Earth System Science 122:13731386.Google Scholar
SLIK, J.W., ARROYO-RODRÍGUEZ, V., AIBA, S., ALVAREZ-LOAYZA, P., ALVES, L. F., ASHTON, P. S., BALVANERA, P., BASTIAN, M. L., BELLINGHAM, P. J., VAN DEN BERG, E., BERNACCI, L., DA CONCEIÇÃO BISPO, P., BLANC, L., BÖHNING-GAESE, K., BOECKX, P.G., BONGERS, F., BOYLE, B., BRADFORD, M., BREARLEY, F. Q., BREUER-NDOUNDOU HOCKEMBA, M., BUNYAVEJCHEWIN, D., MATOS, C. L., CASTILLO-SANTIAGO, M., CATHARINO, L. M., CHAI, S. et al. 2015. An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences USA 112:33.Google Scholar
SMITH, T., RANA, R., MISSIAEN, P., ROSE, K. D., SAHNI, A., SINGH, H. & SINGH, L. 2007. High bat (Chiroptera) diversity in the Early Eocene of India. Naturwissenschaften 94:10031009.Google Scholar
SMITH, T., KUMAR, K., RANA, R. S., FOLIE, A., SOLÉ, F., NOIRET, C., STEEMAN, T., SAHNI, A. & ROSE, K. 2017. New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geoscience Frontiers 7:9691001.Google Scholar
SOLTIS, D. E., BELL, C. D., KIM, S. & SOLTIS, P. S. 2008. Origin and early evolution of angiosperms. Annals of the New York Academy of Science 1133:325.Google Scholar
SONGTHAM, W., RATANASTHIEN, B., MILDENHALL, D. C., SINGHARAJWARAPAN, S. & KANDHAROSA, W. 1993. Oligocene-Miocene climatic changes in northern Thailand resulting from extrusion tectonics of Southeast Asian landmass. Science Asia 29:221233.Google Scholar
SRIVASTAVA, G., PAUDAYAL, K. N., UTESCHER, T. & MEHROTRA, R. C. 2018. Miocene vegetation shift and climate change: evidence from the Siwalik of Nepal. Global and Planetary Change 161:108120.Google Scholar
SRIVASTAVA, S. K. 1983. Cretaceous geophytoprovinces and palaeogeography of the Indian Plate based on palynological data. Pp. 141–157 in Maheswari, H. K. (ed.), Cretaceous of India. Indian Association of Palynostratigraphy, Lucknow.Google Scholar
STOREY, M., MAHONEY, J. J., SANDERS, A. D., DUNCAN, R. A., KELLEY, S. P. & COFFIN, M. F. 1995. Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science 267:852855.Google Scholar
TAKHTAJAN, A. 1969. Flowering plants – origin and dispersal. Oliver and Boyd, Edinburgh. 310 pp.Google Scholar
TER STEEGE, H., PITMAN, N. C. A., SABATIER, D., BARALOTO, C., SALOMÃO, R. P., GUEVARA, J. F., PHILLIPS, O. L., CASTILHO, C. V., MAGNUSSON, W. E., MOLINO, J. F., MONTEAGUDO, A., NÚÑEZ VARGAS, P. I. C., MONTERO, J. C., FELDPAUSCH, T. R., HONORIO CORONADO, E. N., KILLEEN, T. J., MOSTACEDO, B., VASQUEZ, R., ASSIS, R. L., TERBORGH, J., WITTMANN, F., ANDRADE, A., LAURANCE, W. F., LAURANCE, S. G. W., MARIMON, B. S. et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342:1243092.Google Scholar
THOMAS, D. C., HUGHES, M., PHUTTHAI, T., ARDI, W. H., RAJBHANDARY, S., RUBITE, R., TWYFORD, A. D. & RICHARDSON, J. E. 2012. West to east dispersal and subsequent rapid diversification of the mega-diverse genus Begonia (Begoniaceae) in the Malesian archipelago. Journal of Biogeography 39:98113.Google Scholar
THORNHILL, A. H., HO, S. Y. W., KÜLHEIM, C. & CRISP, M. D. 2015. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93:2943.Google Scholar
THUSU, B., VAN DER EEM, J. G. L. A., EL-MEHDAWI, A. & BU-ARGOUB, F. 1988. Jurassic ± Early Cretaceous palynostratigraphy in north-east Libya. Pp. 171213 in El-Arnauti, A., Owens, B. & Thusu, B. (eds). Subsurface palynology of Northeast Libya. Garyounis University Publications, Benghazi.Google Scholar
TOUSSAINT, E. F. A., HALL, R., MONAGHAN, M. T., SAGATA, K., IBALIM, S., SHAVERDO, H. V., VOLGER, A. P., PORIS, J. & BALKE, M. 2014. The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications 5:4001. doi: 10.1038/ncomms5001.Google Scholar
TREOLAR, P. J., REX, D. C., GUISE, P. G., COWARD, M. P., WINDLEY, B. F., PETERSON, M. G., JAN, M. Q. & LUFF, I. W. 1989. K/Ar and Ar/Ar geochronology of the Himalayan collision in NW Pakistan: constraints on the timing of suturing, deformation, metamorphism, and uplift. Tectonics 8:881909.Google Scholar
TURNER, B. L. & CERNUSAK, L. A. (eds) 2011. Ecology of Podocarpaceae in tropical forests. Smithsonian Contributions to Botany 95. Smithsonian Institution Scholarly Press, Washington DC. 307 pp.Google Scholar
UPCHURCH, G. R., OTTO-BLIESNER, B. L. & SCOTESE, C. 1998. Vegetation ± atmosphere interactions and their role in global warming during the latest Cretaceous. Philosophical Transactions of the Royal Society London B 353:97112.Google Scholar
VAN DER KAARS, W. A. & DAM, M. A. C. 1995. A 135,000-year old record of vegetation and climatic change from the Bandung area, West Java, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 117:5571.Google Scholar
VAN DER KAARS, W. A., BASSINOT, F., DE DECKKER, P. & GUICHARD, F. 2010. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83,000 years: the record from marine core BAR94-42. Palaeogeography, Palaeoclimatology, Palaeoecology 296:5278.Google Scholar
VAN GORSEL, J. T., LUNT, P. & MORLEY, R. J. 2014. Introduction to Cenozoic biostratigraphy of Indonesia-SE Asia. Berita Sedimentologi 29:640.Google Scholar
VAN HINSBERGEN, D. J. J., LIPPERT, C. P., DUPONT-NIVET, G., MCQUARRIE, N., DOUBROVINE, P. V., SPAKMAN, W. & TORSVIK, T. H. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences USA 109:76597664.Google Scholar
VAN STEENIS, C.G.G.J. 1936. On the origin of the Malaysian mountain flora, Part 3. Analysis of floristic relationships (1st instalment). Bulletin du Jardin Botanique de Buitenzorg III 14:3672.Google Scholar
VAN WELTZEN, P., PARNELL, J. A. N. & SLIK, J. W. F. 2011. Wallace's Line and plant distributions: two or three phytogeographical areas and where to group Java? Biological Journal of the Linnean Society 103:531545.Google Scholar
VENKATACHALA, B. S. & RAWAT, M. S. 1971. Palynology of the Tertiary sediments in the Cauvery Basin-1. Palaeocene-Eocene palynoflora from the subsurface. Pp. 292335 in Ghosh, A. K., Chanda, S., Ghosh, T. K., Baksi, S. K. & Banerjee, M. (eds). Proceedings of the Seminar on Paleopalynology and Indian Stratigraphy, Calcutta, 1971. Botany Department, Calcutta University.Google Scholar
VORIS, H. K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27:11531167.Google Scholar
WATANASAK, M. 1988. Palaeoecological reconstruction of Nong Ya Plong Tertiary Basin (Central Thailand). Journal of Ecology (Thailand) 15:6170.Google Scholar
WALLACE, A.R. 1869. The Malay Archipelago. McMillan and Co., London. 515 pp.Google Scholar
WANG, B., CLEMENS, S. C. & LIU, P. l. 2003. Contrasting the Indian and East Asian monsoons. Marine Geology 201:521.Google Scholar
WEBB, L. J. 1959. A physiognomic classification of Australian rain forests. Journal of Ecology 47:551570.Google Scholar
WEBB, C. O. & REE, R. 2012. Historical biogeography inference in Malesia. Pp. 191215 in Gower, D. J., Johnson, K. G., Richardson, J. E., Rosen, B. R., Ruber, L. & Williams, S. T. (eds). Biotic evolution and environmental change in Southeast Asia. Cambridge University Press, Cambridge.Google Scholar
WERNER, W.L. 1997. Pines and other conifers in Thailand – a Quaternary relic? Journal of Quaternary Science 12:451454.Google Scholar
WITTS, D., HALL, R., NICHOLS, G. & MORLEY, R. J. 2012. New depositional and provenance model for the Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. Journal of Asian Earth Sciences 56:77104.Google Scholar
WITTS, D., DAVIES, L., MORLEY, R. J. & ANDERSON, L. 2015. Neogene deformation of East Kalimantan, a regional perspective. In Proceedings, Indonesian Petroleum Association, Thirty-Ninth Annual Convention & Exhibition. Indonesian Petroleum Association, Jakarta.Google Scholar
WHEELER, E. A., SRIVASTAVA, R., MANCHESTER, S. R. & BAAS, P. 2017. Surprisingly modern Latest Cretaceous – earliest Paleocene woods of India. IAWA Journal 38:456542.Google Scholar
WOLFE, J. A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of northern hemisphere and Australasia. US Geological Survey Professional Paper 1106.Google Scholar
WURSTER, C. M., BIRD, M. I., BULL, I. D., CREED, F., BRYANT, C., DUNGAIT, J. A. J. & PAZ, V. 2010. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proceedings of the National Academy of Sciences USA 107:1550815511.Google Scholar
YAKZAN, A. M., AWALLUDIN, H., BAHARI, M. N. & MORLEY, R. J. 1996. Integrated biostratigraphic zonation for the Malay Basin. Bulletin of the Geological Society of Malaysia 39:157184.Google Scholar
YANG, F. C. & GROTE, P. J. 2017. Riverine vegetation and environments of a Late Pleistocene river terrace, Khorat Plateau, Southeast Asia. Palynology 42:158167.Google Scholar
YASUDA, Y., AMANO, K. & YAMANOI, T. 1990. Pleistocene climate changes as deduced from a pollen analysis of Site 717 cores. Pp. 249257 in Stewart, N. J. & Winkler, W. R. (eds). Proceedings of the Ocean Drilling Program, Scientific Results 116. US Government Printing Office, Washington DC.Google Scholar
ZACHOS, J. C., PAGINI, M., SLOAN, L., THOMAS, E. & BILLUPS, K. 2001. Trends, rhythms and aberrations in global climate 65 Ma to Present. Science 292:686693.Google Scholar