Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:43:09.143Z Has data issue: false hasContentIssue false

White muscle lactate and pyruvate concentrations in rested flounder, Platichthys flesus and plaice, Pleuronectes platessaa: a re-evaluation of handling and sampling techniques

Published online by Cambridge University Press:  06 October 2009

P. J. Adcock
Affiliation:
Research Unit for Comparative Animal Respiration, University of Bristol, Woodland Road, Bristol, BS8 1UG
P. R. Dando
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB

Abstract

Rapid fixing of skeletal muscle by a ‘freeze-clamp’ technique results in up to a 3-fold lower lactate, a slightly higher pyruvate concentration and a 2- to 4-fold decrease in lactate/pyruvate ratio, to the lowest value yet recorded for fish muscle, when compared with the more usual method of direct immersion in liquid nitrogen. This is attributed to the faster cooling rate of freeze-clamped muscle minimizing ‘sampling anoxia’. Immobilizing fish either by anaesthetic or stunning produces no significant change in metabolite levels. It is concluded that it is relatively easy to handle quiescent flatfish, but light anaesthesia ensures no muscular activity.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergmeyer, H. U., Bernt, E., Gawehn, K. & Gerhard, M., 1978. The sample. In Principles of Enzymatic Analysis (ed. Bergmeyer, H. U. and Gawehn, K.), pp. 109114. New York: Verlag Chemie.Google Scholar
Black, E. C., Connor, A. R., Lam, K. C. & Chiu, W. G., 1962. Changes in glycogen, pyruvate and lactate in rainbow trout (Salmo gairdneri) during and following muscular activity. Journal of the Fisheries Research Board of Canada, 19, 409436.CrossRefGoogle Scholar
Börjeson, H. & Fellenius, E., 1976. Towards a valid technique of sampling fish muscle to determine redox substrates. Acta physiologica scandinavica, 96, 202206.CrossRefGoogle ScholarPubMed
Bücher, T., Czok, R., Lamprecht, W. & Latzko, E., 1965. Pyruvate. In Methods of Enzymatic Analysis (ed. Hergmeyer, H. U.), pp. 253259. Academic Press.CrossRefGoogle Scholar
Burton, D. T. & Heath, A. G., 1980. Ambient oxygen tension (P02) and transition to anaerobic metabolism in three species of freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences, 37, 12161224.CrossRefGoogle Scholar
Burton, D. T. & Spehar, A. M., 1971. A re-evaluation of the anaerobic end products of fresh-water fish exposed to environmental hypoxia. Comparative Biochemistry and Physiology, 40 A, 945954.CrossRefGoogle Scholar
Connor, A. R., Elling, C. H., Black, E. C., Collins, G. B., Gauley, J. R. & Trevor-Smith, E., 1964. Changes in glycogen and lactate levels in migrating salmonid fishes ascending experimental ‘endless’ fish ways. Journal of the Fisheries Research Board of Canada, 21, 255290.CrossRefGoogle Scholar
Dando, P. R., 1969. Lactate metabolism in fish. Journal of the Marine Biological Association of the United Kingdom, 49, 209223.CrossRefGoogle Scholar
Duthie, G. G., 1982. The respiratory metabolism of temperature adapted flatfish at rest and during swimming activity and the use of anaerobic metabolism at moderate swimming speeds. Journal of Experimental Biology, 97, 359373.CrossRefGoogle ScholarPubMed
Engel, P. C. & Jones, J. B., 1978. Causes and elimination of erratic blanks in enzymatic metabolite assays involving the use of NAD+ in alkaline hydrazine buffers: improved conditions for the assay of L-glutanate L-lactate and other metabolites. Analytical Biochemistry, 88, 475484.CrossRefGoogle Scholar
Fraser, D. I., Dyer, W. J., Weinstein, H. M., Dingle, J. R. & Hines, J. A., 1966. Glycolytic metabolites and their distribution at death in the white and red muscle of cod following various degrees of antemortem muscular activity. Canadian Journal of Biochemistry, 44, 10151033.CrossRefGoogle ScholarPubMed
Fréminet, A., 1981. Comparison of glycogen stores in rats and guinea pigs: effects of anaesthesia, fasting and re-feeding. Comparative Biochemistry and Physiology, 69 B, 655663.Google Scholar
Gronow, G., 1974. Über die Belastung von Idus idus L. (Teleostei) durch Fang, Narkose und experimentelle Umigebung. Zoologischer Anzeiger, 193, 1734.Google Scholar
Hohorst, H. J., 1965. L-( + )-lactate determination with lactic dehydrogenase and DPN. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 266270. Academic Press.CrossRefGoogle Scholar
Johnston, I. A., 1975. Studies on the swimming musculature of the rainbow trout. II. Muscle metabolism during severe hypoxia. Journal of Fish Biology, 7, 459467.CrossRefGoogle Scholar
Johnston, I. A. & Goldspink, G., 1973. A study of the swimming performance of the Crucian carp Carassius carassius (L.) in relation to the effects of exercise and recovery on biochemical changes in the myotomal muscles and liver. Journal of Fish Biology, 5, 249260.CrossRefGoogle Scholar
Jøsashrgensen, J. B. & Mustafa, T., 1980. The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.). I. Utilization of glycogen and accumulation of glycolytic end products in various tissues. Comparative Biochemistry and Physiology, 67 B, 243248.Google Scholar
Love, R. M. & Elerian, M. K., 1964. Protein denaturation in frozen fish. VIII. Temperature of maximum denaturation in cod. Journal of the Science of Food and Agriculture, 15, 805809.CrossRefGoogle Scholar
Lowry, O. H. & Passonneau, J. V., 1972. A Flexible System of Enzymatic Analysis, xii, 291 pp. Academic Press.Google Scholar
Nowlan, S. S. & Dyer, W. J., 1969. Glycolytic and nucleotide changes in the critical freezing zone, −0·8 to −5 °C, in pre-rigor cod muscle frozen at various rates. Journal of the Fisheries Research Board of Canada, 26, 26212632.CrossRefGoogle Scholar
Shoubridge, E. A. & Hochachka, P. W., 1980. Ethanol, novel end product of vertebrate anaerobic metabolism. Science, New York, 209, 308309.CrossRefGoogle ScholarPubMed
Thillart, G. Van Den, Waarde, A. Van, Dobbe, F. & Kesbeke, F., 1982. Anaerobic energy metabolism of goldfish, Carassius auratus (L.), effects of anoxia on the measured and calculated NAD+/NADH ratios in muscle and liver. Journal of Comparative Physiology, 146, 4149.CrossRefGoogle Scholar
Wokoma, A. & Johnston, I. A., 1981. Lactate production at high sustainable cruising speeds in rainbow trout (Salmo gairdneri Richardson). Journal of Experimental Biology, 90, 361364.CrossRefGoogle Scholar
Wollenberger, A., Ristau, O. & Schoffa, G., 1960. Eine einfache Technik der extrem schnellen Abkuhlung grosserer Gewebestucke. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 270, 399412.CrossRefGoogle Scholar
Zwiebel, R. & Kirsten, R., 1968. Eine Mikromethode zur Bestimmung von Metaboliten im Muskelgewebe. Zeitschrift für klinische Chemie und klinische Biochemie, 6, 407411.Google Scholar