Skip to main content Accessibility help
×
Home

Species variability in the response to elevated temperature of select corals in north-western Philippines

  • Jeric P. Da-Anoy (a1), Patrick C. Cabaitan (a1) and Cecilia Conaco (a1)

Abstract

Thermal stress events threaten coral populations by disrupting symbiosis between the coral animal and microalgal symbionts in its tissues. These symbionts are key players in the response of the coral holobiont to elevated temperature. However, little is known about the microalgal symbiont type in select corals in the north-western Philippines and how they contribute to the differential responses of coral species. Based on sequencing of major ITS2 bands from DGGE, the dominant algal symbiont in Acropora digitifera, A. millepora, A. tenuis and Favites colemani was identified to be closely related to ITS2 type C3u, Montipora digitata contained ITS2 type C15, and Seriatopora caliendrum hosted ITS2 types similar to C3-Gulf and D1. Thin branching corals, such as A. tenuis and S. caliendrum, exhibited the greatest reduction in photochemical efficiency (Fv/Fm) and symbiont density at elevated temperature, followed by M. digitata and A. millepora, to a lesser extent. A. digitifera and F. colemani were least affected by the temperature treatment. Reduction in Fv/Fm and symbiont density was more apparent in A. tenuis and A. millepora than in M. digitata and F. colemani, although these species all host ITS2 type C3u symbionts. These results suggest that the impact of elevated temperature is influenced by factors apart from symbiont type. This highlights the importance of further studies on the diversity of corals and their microalgal symbionts in the region to gain insights into their potential resilience to recurring thermal stress events.

Copyright

Corresponding author

Author for correspondence: Cecilia Conaco, E-mail: cconaco@msi.upd.edu.ph

References

Hide All
Baird, AH and Marshall, PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series 237, 133141.
Baird, AH, Bhagooli, R, Ralph, PJ and Takahashi, S (2009) Coral bleaching: the role of the host. Trends in Ecology and Evolution 24, 1620.
Barshis, DJ, Ladner, JT, Oliver, TA, Seneca, FO, Traylor-Knowles, N and Palumbi, SR (2013) Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences USA 110, 13871392.
Bay, RA and Palumbi, SR (2015) Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biology and Evolution 7, 16021612.
Bellantuono, AJ, Hoegh-Guldberg, O and Rodriguez-Lanetty, M (2011) Resistance to thermal stress in corals without changes in symbiont composition. Proceedings of the Royal Society B: Biological Sciences 279, 11001107.
Brown, B, Dunne, R, Goodson, M and Douglas, A (2002) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21, 119126.
Carpenter, KE, Abrar, M, Aeby, G, Aronson, RB, Banks, S, Bruckner, A, Chiriboga, A, Cortés, J, Delbeek, JC, Devantier, L, Edgar, GJ, Edwards, AJ, Fenner, D, Guzmán, HM, Hoeksema, BW, Hodgson, G, Johan, O, Licuanan, WY, Livingstone, SR, Lovell, ER, Moore, JA, Obura, DO, Ochavillo, D, Polidoro, BA, Precht, WF, Quibilan, MC, Reboton, C, Richards, ZT, Rogers, AD, Sanciangco, J, Sheppard, A, Sheppard, C, Smith, J, Stuart, S, Turak, E, Veron, JE, Wallace, C, Weil, E and Wood, E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560.
Coles, SL and Brown, BE (2003) Coral bleaching – capacity for acclimatization and adaptation. Advances in Marine Biology 46, 183223.
DeSalvo, MK, Sunagawa, S, Fisher, PL, Voolstra, CR, Iglesias-Prieto, R and Medina, M (2010) Coral host transcriptomic states are correlated with Symbiodinium genotypes. Molecular Ecology 19, 11741186.
Dimond, JL, Holzman, BJ and Bingham, BL (2012) Thicker host tissues moderate light stress in a cnidarian endosymbiont. Journal of Experimental Biology 215, 22472254.
Dornelas, M, Madin, JS, Baird, AH and Connolly, SR (2017) Allometric growth in reef-building corals. Proceedings of The Royal Society B, Biological Sciences 284, 1851. https://doi.org/10.1098/rspb.2017.0053.
Dove, SG, Lovell, C, Fine, M, Deckenback, J, Hoegh-Guldberg, O, Iglesias-Prieto, R and Anthony, KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant, Cell & Environment 31, 15231533.
Edgar, RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
Enríquez, S, Méndez, ER and Prieto, RI (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnology and Oceanography 50, 10251032.
Fisher, PL, Malme, MK and Dove, S (2012) The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31, 473485.
Franklin, EC, Stat, M, Pochon, X, Putnam, HM and Gates, RD (2011) Geosymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Molecular Ecology Resources 12, 369373.
Gajigan, AP and Conaco, C (2017) A microRNA regulates the response of corals to thermal stress. Molecular Ecology 26, 34723483.
Hoegh-Guldberg, O, Poloczanska, ES, Skirving, W and Dove, S (2017) Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science 4, 158.
Hoogenboom, MO, Frank, GE, Chase, TJ, Jurriaans, S, Álvarez-Noriega, M, Peterson, K, Critchell, K, Berry, KLE, Nicolet, KJ, Ramsby, B and Paley, AS (2017) Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Frontiers in Marine Science 4, 376.
Hou, J, Xu, T, Su, D, Wu, Y, Cheng, L, Wang, J, Zhou, Z and Wang, Y (2018) RNA-Seq reveals extensive transcriptional response to heat stress in the stony coral Galaxea fascicularis. Frontiers in Genetics 9, 37.
Howells, EJ, Berkelmans, R, van Oppen, MJH, Willis, BL and Bay, LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94, 10781088.
Hughes, TP, Kerry, JT, Álvarez-Noriega, M, Álvarez-Romero, JG, Anderson, KD, Baird, AH, Babcock, RC, Beger, M, Bellwood, DR, Berkelmans, R, Bridge, TC, Butler, IR, Byrne, M, Cantin, NE, Comeau, S, Connolly, SR, Cumming, GC, Dalton, SJ, Diaz-Pulido, G, Eakin, CM, Figueira, WF, Gilmour, JP, Harrison, HB, Heron, SF, Hoey, AS, Hobbs, JPA, Hoogenboom, MO, Kennedy, EV, Kuo, CY, Lough, JM, Lowe, RJ, Liu, G, McCulloch, MT, Malcolm, HA, McWilliam, MJ, Pandolfi, JM, Pears, RJ, Pratchett, MS, Schoepf, S, Simpson, T, Skirving, WJ, Sommer, B, Torda, G, Wachenfeld, DR, Willis, BL and Wilson, SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543, 373.
Hume, BC, D'Angelo, C, Smith, EG, Stevens, JR, Burt, J and Wiedenmann, J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Scientific Reports 5, 8562.
Jokiel, PL (2004) Temperature stress and coral bleaching. In Rosenberg E and Loya Y (eds), Coral Health and Disease. Berlin: Springer, pp. 401425.
Keshavmurthy, S, Meng, PJ, Wang, JK, Kuo, CY and Yang, SY (2014) Can resistant coral–Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ 2, e327.
Knowlton, N, Brainard, RE, Fisher, R, Moews, M, Plaisance, L and Caley, MJ (2010) Coral reef biodiversity. In McIntyre AD (ed.), Life in the World's Oceans. Oxford: Wiley-Blackwell, pp. 6578.
Krueger, T, Hawkins, TD, Becker, S, Pontasch, S, Dove, S, Hoegh-Guldberg, O, Leggat, W, Fisher, PL, and Davy, SK (2015) Differential coral bleaching – contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 190, 1525.
Kuguru, B, Winters, G, Beer, S, Santos, SR and Chadwick, NE (2007) Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Marine Biology 151, 12871298.
LaJeunesse, T (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Marine Biology 141, 387400.
LaJeunesse, TC and Trench, RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biological Bulletin 199, 126134.
LaJeunesse, TC, Pettay, DT, Sampayo, EM, Phongsuwan, N, Brown, B, Obura, DO, Hoegh-Guldberg, O and Fitt, WK (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. Journal of Biogeography 37, 785800.
LeGresley, M and McDermott, G (2010) Counting chamber methods for quantitative phytoplankton analysis – haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Karlson, B, Cusack, C and Bresnan, E (eds), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. Paris: UNESCO, pp. 2530.
Lesser, MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187192.
Lesser, MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology 68, 253278.
Li, S, Yu, KF and Shi, Q (2008) Experimental study of stony coral response to the high temperature in Luhuitou of Hainan Island. Tropical Geography 28, 534539.
Loya, Y, Sakai, K, Yamazato, K, Nakano, Y, Sambali, H and van Woesik, R (2001) Coral bleaching: the winners and the losers. Ecology Letters 28, 534539.
Marshall, PA and Baird, AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19, 155163.
McPhaden, MJ, Zebiak, SE and Glantz, MH (2006) ENSO as an integrating concept in Earth science. Science 314, 1740.
Meyer, E, Aglyamova, GV and Matz, MV (2011) Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Molecular Ecology 20, 35993616.
Middlebrook, R, Hoegh-Guldberg, O and Leggat, W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. Journal of Experimental Biology 211, 10501056.
Muscatine, L and Porter, JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454460.
Oakley, CA, Durand, E, Wilkinson, SP, Peng, L, Weis, VM, Grossman, AR and Davy, SK (2017) Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic Cnidarian Aiptasia. Journal of Proteome Research 16, 21212134.
Parkinson, JE, Banaszak, AT, Altman, NS, LaJeunesse, TC and Baums, IB (2015) Intraspecific diversity among partners drives functional variation in coral symbioses. Scientific Reports 5, 15667.
Peñaflor, EL, Skirving, WJ, Strong, AE, Heron, SF and David, LT (2009) Sea-surface temperature and thermal stress in the Coral Triangle over the past two decades. Coral Reefs 28, 841.
Putnam, HM, Edmunds, PJ and Fan, T-Y (2010) Effect of a fluctuating thermal regime on adult and larval reef corals. Invertebrate Biology 129, 199209.
Ralph, PJ, Hill, R, Doblin, MA and Davy, SK (2015) Theory and application of pulse amplitude modulated chlorophyll fluorometry in coral health assessment. In Woodley, CM, Downs, CA, Bruckner, AW, Porter, JW and Galloway, SB (eds) Diseases of Coral. Hoboken, NJ: John Wiley & Sons, pp. 506523.
Richier, S, Furla, P, Plantivaux, A, Merle, PL and Allemand, D (2005) Symbiosis-induced adaptation to oxidative stress. Journal of Experimental Biology 208, 277285.
Rodriguez-Lanetty, M, Harii, S and Hoegh-Guldberg, O (2009) Early molecular responses of coral larvae to hyperthermal stress. Molecular Ecology 18, 51015114.
Rohwer, F, Seguritan, V, Azam, F and Knowlton, N (2002) Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series 243, 110.
Rowan, R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430, 742.
Salih, A, Larkum, A, Cox, G, Kühl, M and Hoegh-Guldberg, O (2000) Fluorescent pigments in corals are photoprotective. Nature 408, 850.
Sampayo, EM, Dove, S and Lajeunesse, TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Molecular Ecology 18, 500519.
Silverstein, RN, Cunning, R and Baker, AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology 21, 236249.
Stat, M and Gates, RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? Journal of Marine Biology 730715, 9.
Talavera, G, Castresana, J, Kjer, K, Page, R and Sullivan, J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564577.
Tamura, K, Stecher, G, Peterson, D, Filipski, A and Kumar, S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 27252729.
Traylor-Knowles, N, Rose, NH, Sheets, EA and Palumbi, SR (2017) Early transcriptional responses during heat stress in the coral Acropora hyacinthus. Biological Bulletin 232, 91100.
Truett, GE, Heeger, P, Mynatt, RL, Truett, AA, Walker, JA and Warman, ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52, 54.
Veal, CJ, Carmi, M, Fine, M and Hoegh-Guldberg, O (2010) Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893897.
Yakovleva, I, Bhagooli, R, Takemura, A and Hidaka, M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139, 721730.
Yamashita, H, Suzuki, G, Kai, S, Hayashibara, T and Koike, K (2014) Establishment of coral-algal symbiosis requires attraction and selection. PLoS ONE 9, e97003.
Yap, HT, Espita, DML, Montaño, MNE, Benjamin, C and Gomez, ED (2014) Biochemical comparison of bleaching and non-bleaching Montipora digitata (Order Scleractinia) in the Philippines. Philippine Science Letters 7, 293299.
Yu, K (2012) Coral reefs in the South China Sea: their response to and records on past environmental changes. Science China Earth Sciences 55, 12171229.
Zar, JH (1984) Biostatistical Analysis. London: Prentice Hall.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed