Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-29T18:29:09.307Z Has data issue: false hasContentIssue false

Spatial variability of planktonic invertebrate larvae in the Canary Islands area

Published online by Cambridge University Press:  10 August 2009

J.M. Landeira*
Affiliation:
Departamento de Biología Animal, UDI Ciencias Marinas, Universidad de La Laguna, Spain
F. Lozano-Soldevilla
Affiliation:
Departamento de Biología Animal, UDI Ciencias Marinas, Universidad de La Laguna, Spain
S. Hernández-León
Affiliation:
Laboratorio de Oceanografía Biológica, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Spain
E.D. Barton
Affiliation:
Departamento de Oceanoloxía, IIM Consejo Superior de Investigaciones Científicas, Vigo, Spain
*
Correspondence should be addressed to: J.M. Landeira, Departamento de Biología Animal, UDI Ciencias Marinas, Universidad de La Laguna, Spain email: jmlandei@ull.es

Abstract

In October 1991, invertebrate larvae abundances were analysed to study the influence of the disturbance of the Canary Current flow by the Canary Islands archipelago on the variability of larval distribution. Two transects and two time-series stations located to the north (non-perturbed zone) and the south (perturbed zone) of the Canary Islands were sampled. Oceanographical data showed a highly stratified water column and zonally uniform salinity and temperature seaward of the African upwelling in the non-perturbed zone, while the perturbed zone presented strong turbulence in the form of mesoscale eddies. Invertebrate larval abundances were lower for most taxa studied in the non-perturbed zone and northern time-series station. Significant differences (P < 0.001) of invertebrate larval abundance between the two zones sampled were found. Decapod larvae were the most abundant larval group in both zones. Stations located in eddy structures presented the highest values of larval densities. Specifically, the larvae collected at Station 18, located in the core of an anticyclonic eddy, represented 60±18% of total larvae collected in the south transect. Finally, our results suggest that eddies, mainly anticyclonic eddies, act as a strong larval retention zone south of the islands, and that there is a local northward transport from the Canary Islands.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almada, F., Almada, V.C., Domingues, V., Brito, A. and Santos, R.S. (2005) Molecular validation of the specific status of Parablennius sanguinolentus and Parablennius parvicornis (Pises: Blenniidae). Scientia Marina 69, 519523.CrossRefGoogle Scholar
Arístegui, J., Sangrá, P., Hernández-León, S., Cantón, M., Hernández-Guerra, A. and Kerling, J.L. (1994) Island-induced eddies in the Canary Islands. Deep-Sea Research I 41, 15091525.CrossRefGoogle Scholar
Arístegui, J., Tett, P., Hernández-Guerra, A., Basterretxea, G., Montero, M.F., Wild, K., Sangrá, P., Hernández-León, S., Cantón, M., García-Braun, J.A., Pacheco, M. and Barton, E.D. (1997) The influence of island generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria. Deep-Sea Research I 44, 7196.CrossRefGoogle Scholar
Arístegui, J. and Montero, M.F. (2005) Temporal and spatial changes in plankton respiration and biomass in the Canary Islands region: the effect of mesoscale variability. Journal of Marine Systems 54, 6582.CrossRefGoogle Scholar
Barton, E.D., Arístegui, J., Tett, P., Canto, N., García-Braun, J., Hernández-León, S., Nykjaer, L., Almeida, C., Almunia, J., Ballesteros, S., Basterretxea, G., Escanez, J., Garcia-Weill, L., Hernández-Guerra, A., Lopez-Laatzen, F., Molina, R., Montero, M.F., Navarro-Pérez, E., Rodriguez, J.M., Van Lenning, K., Velez, H. and Wild, K. (1998) The transition zone of the Canary Current upwelling region. Progress in Oceanography 41, 455504.CrossRefGoogle Scholar
Barton, E.D., Arístegui, J., Tett, P. and Navarro-Pérez, E. (2004) Variability in the Canary Islands area of the filaments–eddy exchanges. Progress in Oceanography 62, 7194.CrossRefGoogle Scholar
Bécognée, P., Almeida, C., Barrera, A., Hernández-Guerra, A. and Hernández-León, S. (2006) Annual cycle of clupeiform larvae around Gran Canaria Island, Canary Islands. Fisheries Oceanography 15, 293300.CrossRefGoogle Scholar
Clarke, K. and Warwick, R. (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth, UK: PRIMER-E, 172 pp.Google Scholar
Domingues, V.S., Santos, R.S., Brito, A. and Almada, V.C. (2006) Historical population dynamics and demography of the eastern Atlantic pomacentrid Chromis limbata (Valenciennes, 1883). Molecular Phylogenetics and Evolution 40, 139147.CrossRefGoogle Scholar
Domingues, V.S., Almada, V.C., Santos, R.S., Brito, A. and Bernardi, G. (2007) Phylogeography and evolution of the triplefin Tripterygion delaisi (Pises, Blennioidei). Marine Biology 150, 509519.CrossRefGoogle Scholar
Dos Santos, A. and Lindley, J.A. (2001) Crustacea Decapada: Larvae. II Dendrobranchiata. (Aristeidae, Benthesicymidae, Penaeidae, Solenoceridae, Sicyonidae, Sergestidae and Luciferidae). ICES Identification Leaflets for Plankton 186, 19.Google Scholar
Dos Santos, A. and González-Gordillo, J.I. (2004) Illustrated key for the identification of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe. Journal of the Marine Biological Association of the United Kingdom 84, 205227.CrossRefGoogle Scholar
González-Pérez, J.A. (1995) Catálogo de Crustáceos Decápodos de Las Islas Canarias. Santa Cruz de Tenerife: Turquesa Ed., 282 pp.Google Scholar
Heegaard, P. (1969) Larvae of Decapod Crustacea. The Amphionidae. Dana-Report 7, 182.Google Scholar
Hernández-Guerra, A., Arístegui, J., Cantón, M. and Nykjaer, L. (1993) Phytoplankton pigment patterns in the Canary Islands as determined using Coastal Zone Colour Scanner data. International Journal of Remote Sensing 14, 14311437.CrossRefGoogle Scholar
Hernández-León, S., Almeida, C., Gómez, M., Torres, S., Montero, I. and Portillo-Hahnefeld, A. (2001) Zooplankton biomass and indices of feeding and metabolism in island-generated eddies around Gran Canaria. Journal of Marine Systems 30, 5166.CrossRefGoogle Scholar
Largier, J.L. (2003) Considerations in estimating larval dispersal distances from oceanographic data. Ecological Applications 13 (Supplement), S71S89.CrossRefGoogle Scholar
Machín, F., Hernández-Guerra, A. and Pelegrí, J.L. (2006) Mass fluxes in the Canary Basin. Progress in Oceanography 70, 416447.CrossRefGoogle Scholar
Molina, R. (1973) Contribution to the study of the Canary Current. ICES 1973 C.M./C: 6: 7 pp.Google Scholar
Molina, R. and Laatzen, F.L. (1986) Corrientes en la región comprendida entre las islas Canarias orientales, Marruecos y las islas Madeira. Campaña ‘Norcanarias I’. Revista de Geofísica 42, 4152.Google Scholar
Müller, T.J. and Siedler, G. (1992) Multi-year current time series in the eastern North Atlantic Ocean. Journal of Marine Research 50, 6298.Google Scholar
Pechenik, J.A. (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series 177, 269297.CrossRefGoogle Scholar
Pineda, J., Hare, J. and Sponaugle, S. (2007) Larval transport and dispersal and consequences for population connectivity. Oceanography 20, 2239.CrossRefGoogle Scholar
Queiroga, H. and Blanton, J. (2004) Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Advances in Marine Biology 47, 107214.CrossRefGoogle Scholar
Reuschel, S. and Schubart, C.D. (2006) Phylogeny and geographic differentiation of Atlanto-Mediterranean species of the genus Xantho (Crustacea: Brachyura: Xanthidae) based on genetic and morphometric analyses. Marine Biology 148, 853866.CrossRefGoogle Scholar
Rodríguez, J.M., Hernández-León, S. and Barton, E.D. (1999) Mesoscale distribution of fish larvae in relation to an upwelling filament off northwest Africa. Deep-Sea Research I 46, 19691984.CrossRefGoogle Scholar
Rodríguez, J.M., Braun, J.G. and García, A. (2000) Spatial variability of the mesozooplankton biomass and ichthyoplankton in the Canary region, in autumn 1991. Journal of Plankton Research 22, 13771391.CrossRefGoogle Scholar
Rodríguez, J.M., Barton, E.D., Eve, L. and Hernández-León, S. (2001) Mesozooplankton and ichthyoplankton distribution around Gran Canaria, an oceanic island in the NE Atlantic. Deep-Sea Research I 48, 21612183.CrossRefGoogle Scholar
Rodríguez, J.M., Barton, E.D., Hernández-León, S. and Arístegui, J. (2004) The influence of mesoscale physical processes on the larval fish community in the Canaries CTZ, in summer. Progress in Oceanography 62, 171188.CrossRefGoogle Scholar
Rodríguez, J.M., Hernández-León, S. and Barton, E.D. (2006) Vertical distribution of fish larvae in the Canaries CTZ, in summer. Marine Biology 149, 885897.CrossRefGoogle Scholar
Sangrà, P., Auladell, M., Marrero-Díaz, A., Pelegrí, J.L., Fraile-Nuez, E., Rodríguez-Santana, A., Martín, J.M., Mason, E. and Hernández-Guerra, A. (2007) On the nature of oceanic eddies shed by the Island of Gran Canaria. Deep-Sea Reseach I 54, 687709.CrossRefGoogle Scholar
Shanks, A.L. (1995) Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In McEdward, L. (ed.) Ecology of marine invertebrate larvae. Boca Raton, FL: CRC Press, pp. 323368.Google Scholar
Shanks, A.L. and Eckert, G.L. (2005) Population persistence of California current fishes and benthic crustaceans: a marine drift paradox. Ecological Monographs 75, 4, 505524.CrossRefGoogle Scholar
Sponaugle, S., Cowen, R., Shanks, A., Morgan, S., Leis, J., Pineda, J., Boehlert, G., Kingsford, M., Lindeman, K., Grimes, Ch. and Munro, J. (2002) Predicting shelf-recruitment in marine populations: biophysical correlates and mechanisms. Bulletin of Marine Science 70, 341375.Google Scholar
Stramma, L. (1984) Geostrophic transport in the warm water sphere of the eastern subtropical North Atlantic. Journal of Marine Research 42, 537558.CrossRefGoogle Scholar
Udekem D'Acoz, C. (1999) Inventaire et distribution des crustacés décapodes de l'Atlantique nord-oriental, de la Méditerranée et des eaux continentales adjacentes au nord de 25°N. Belgique: Patrimoines Naturels (MNHN/SPN).Google Scholar
Vélez-Muñoz, H.S. (1992) Ignat Pavlyuchenkov cruise report: hydrographic fields. Data Report 0031-09, School of Ocean Sciences, University of Wales, Bangor, UK.Google Scholar
Weber, L.I. and Hawkins, S.J. (2005) Patella aspera and P. ulyssiponensis: genetic evidence of speciation in the north-east Atlantic. Marine Biology 147, 153162.CrossRefGoogle Scholar
Wing, S.R., Botsford, L.V., Largier, J.L. and Morgan, L.E. (1995a) Spatial structure of relaxation events and crab settlement in the northern California upwelling system. Marine Ecology Progress Series 128, 199211.CrossRefGoogle Scholar
Wing, S.R., Largier, J.L., Botsford, L.V. and Quinn, J.F. (1995b) Settlement and transport of benthic invertebrates in an intermittent upwelling region. Limnology and Oceanography 40, 316329.CrossRefGoogle Scholar
Zariquiey Álvarez, R. (1968) Crustáceos decápodos ibéricos. Investigación Pesquera 32, 1510.Google Scholar