Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T16:24:02.169Z Has data issue: false hasContentIssue false

Siphonophores in fjords and channels in southern Patagonia: biodiversity, spatial distribution and environmental association

Published online by Cambridge University Press:  20 October 2016

Sergio Palma
Affiliation:
Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
María Cristina Retamal
Affiliation:
Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile Servicio Hidrográfico y Oceanográfico de la Armada, Valparaíso, Chile
Nelson Silva
Affiliation:
Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Antonio Canepa*
Affiliation:
Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
*
Correspondence should be addressed to: A. Canepa, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile Email: antonio.canepa@pucv.cl

Abstract

This study characterizes the abundance and spatial distribution of siphonophores between the Trinidad Channel (50°06′S) and the Strait of Magellan (52°45′S) in southern Chile, during October–November 2009. Ten species were identified, of which Agalma elegans, Rosacea plicata and Sphaeronectes fragilis are new records for this region. Dominant species showed similar dominance values e.g. Lensia conoidea (26.3%), Dimophyes arctica (24.6%), Lensia meteori (22.2%) and Muggiaea atlantica (20.7%). Eudoxids of L. conoidea and D. arctica represented 97.3% of all eudoxids collected and they were mainly collected in estuarine waters. The highest densities were found in estuarine waters (high vertical stratification and low temperature, salinity and dissolved oxygen values). On the other hand, the lowest densities were found in coastal areas influenced by permanent influx of Sub-Antarctic waters from the Pacific (greater instability and vertical mixing, higher temperatures, salinity and dissolved oxygen values). Temperature and dissolved oxygen were the most important environmental variables. In general, all the dominant species showed a positive association with temperature and a negative association with dissolved oxygen (with the exception of L. meteori). The vertical distribution showed that M. atlantica was mainly distributed in the first 50 m, in association with estuarine waters, while L. conoidea, L. meteori and D. arctica were mainly found in the deeper layer (50–200 m) and in association with modified Sub-Antarctic waters. The comparison of the results obtained in the springs of 1996 and 2009 showed a significant increase in abundance.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahumada, A. (1976) Nota sobre los quetognatos capturados en la Expedición Hero 72–4. Segunda etapa. Boletín de la Sociedad de Biología de Concepción 50, 2734.Google Scholar
Alvariño, A. (1971) Siphonophores of the Pacific with a review of the world distribution. Bulletin of the Scripps Institution of Oceanography 6, 1432.Google Scholar
Antezana, T. (1976) Diversidad y equilibrio ecológico en comunidades pelágicas. In Orrego, F. (ed.) Preservación del Medio Ambiente Marino. Santiago: Instituto de Estudios Internacionales, Universidad de Chile, pp. 4054.Google Scholar
Arcos, D. (1974) Los copépodos calanoídeos colectados en la región Magallánica por la Expedición Hero 72–4b. Boletín de la Sociedad de Biología de Concepción 47, 215225.Google Scholar
Arcos, D. (1976) Los copépodos calanoídeos de la región Magallánica. Expedición Hero 72–4. Revista de la Comisión Permanente del Pacífico Sur 5, 85100.Google Scholar
Blackett, M., Lucas, C.H., Harmer, R.A. and Licandro, P. (2015) Population ecology of Muggiaea atlantica (Cnidaria, Siphonophora) in the Western English Channel. Marine Ecology Progress Series 535, 129144.CrossRefGoogle Scholar
Bouillon, J., Medel, M.D., Pagès, F., Gili, J.M., Boero, F. and Gravili, C. (2004) Fauna of the Mediterranean Sea. Scientia Marina 68(Suppl. 2), 5438.Google Scholar
Bravo, V., Palma, S. and Silva, N. (2011) Seasonal and vertical distributional patterns of medusae in Aysén region, southern Chile. Latin American Journal of Aquatic Research 39, 359377.Google Scholar
Brodeur, R., Sugisaki, H. and Hunt, G. (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233, 9103.CrossRefGoogle Scholar
Brodeur, R.D., Mills, C.E., Overland, J.E., Walters, G.E. and Schumacher, J.D. (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fisheries Oceanography 8, 296306.Google Scholar
Brotz, L., Cheung, W.W.L., Kleisner, K., Pakhomov, E. and Pauly, D. (2012) Increasing jellyfish populations: trends in Large Marine Ecosystems. Hydrobiologia 690, 320.Google Scholar
Bustos, C.A., Landaeta, M.F. and Balbontín, F. (2011) Ichthyoplankton spatial distribution and its relation with water column stratification in fjords of southern Chile (46°48′–50°09′S) in austral spring 1996 and 2008. Continental Shelf Research 31, 293303.CrossRefGoogle Scholar
Carpenter, J. (1965) The Chesapeake Bay Institute Technique for the Winkler dissolved oxygen method. Limnology and Oceanography 10, 141143.Google Scholar
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory, 144 pp.Google Scholar
Condon, R.H., Duarte, C.M., Pitt, K.A., Robinson, K.L., Lucas, C.H., Sutherland, K.H., Mianzan, H.W., Bogeberg, M., Purcell, J.E., Decker, M.B., Uye, S., Madin, L.P., Brodeur, R.D., Haddock, S.H.D., Malej, A., Parry, G.D., Eriksen, E., Quiñones, J., Acha, M., Harvey, M., Arthur, J.M. and Graham, W.M. (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences USA 110, 10001005.Google Scholar
Duarte, C.M., Pitt, K.A., Lucas, C.H., Purcell, J.E., Uye, S., Robinson, K., Brotz, L., Decker, M.B., Sutherland, K.R., Malej, A., Madin, L., Mianzan, H., Gili, J.-M., Fuentes, V., Atienza, D., Pagés, F., Breitburg, D., Malek, J., Graham, W.M. and Condon, R.H. (2013) Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and the Environment 11, 9197.Google Scholar
Guerrero, E., Gili, J.-M., Rodriguez, C., Araujo, E.M., Canepa, A., Calbet, A., Genzano, G., Mianzan, H.W. and González, R.A. (2013) Biodiversity and distribution patterns of planktonic cnidarians in San Matías Gulf, Patagonia, Argentina. Marine Ecology 34, 7182.Google Scholar
Hosia, A. and Båmstedt, U. (2008) Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. Journal of Plankton Research 30, 951962.Google Scholar
Hosia, A., Stemmann, L. and Youngbluth, M. (2008) Distribution of net-collected planktonic cnidarians along the northern Mid-Atlantic Ridge and their associations with the main water masses. Deep-Sea Research Part II: Topical Studies in Oceanography 55, 106118.Google Scholar
Kirkpatrick, P.A. and Pugh, P.R. (1984) Siphonophores and velellids. Synopses of the British Fauna (New Series). London: E.J. Brill Academic Publications, 154 pp.Google Scholar
Mianzan, H., Quiñones, J., Palma, S., Schiariti, A., Acha, E.M., Robinson, K.L. and Graham, W.M. (2014) Chrysaora plocamia: a poorly understood jellyfish from South American Waters. In Pitt, K.A. and Lucas, C.H. (eds), Jellyfish blooms. Dordrecht: Springer, pp. 219236. http://doi.org/10.1007/978-94-007-7015-7_10.Google Scholar
Mills, C. (2001) Jellyfish blooms: are populations increasing globally response to changing ocean conditions? Hydrobiology 451, 5568.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Peter Solymos, P., Henry, M., Stevens, H. and Wagner, H. (2015) Vegan: community ecology package. R package version 2.3–0. http://CRAN.R-project.org/package=vegan (accessed 10 July 2015).Google Scholar
Pagès, F. and Orejas, C. (1999) Medusae, siphonophores and ctenophores of the Magellan region. Scientia Marina 65, 5157.Google Scholar
Palma, S. (1973) Contribución al estudio de los sifonóforos encontrados frente a la costa de Valparaíso. I. Taxonomía. Investigaciones Marinas 4, 1788.Google Scholar
Palma, S. (1986) Sifonóforos fisonectes colectados frente a la costa de Valparaíso. Investigaciones Marinas 14, 6978.Google Scholar
Palma, S. (1994) Composición y distribución del macroplancton gelatinoso recolectado frente a la costa central de Chile. Revista de Biología Marina 29, 2345.Google Scholar
Palma, S. (2008) Zooplankton distribution and abundance in the austral Chilean channels and fjords. In Silva, N. and Palma, S. (eds) Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn. Valparaíso: Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, pp. 107113.Google Scholar
Palma, S. and Apablaza, P. (2004) Abundancia estacional y distribución vertical del zooplancton gelatinoso carnívoro en un área de surgencia en el norte del Sistema de la Corriente de Humboldt. Investigaciones Marinas 32, 4970.Google Scholar
Palma, S., Apablaza, P. and Silva, N. (2007b) Hydromedusae (Cnidaria) of the Chilean southern channels (from the Corcovado Gulf to the Pulluche-Chacabuco Channels). Scientia Marina 71, 6574.Google Scholar
Palma, S., Apablaza, P. and Soto, D. (2007a) Diversity and aggregation areas of planktonic cnidarians of the southern channels of Chile (Boca del Guafo to Pulluche Channel). Investigaciones Marinas 35, 7182.Google Scholar
Palma, S. and Aravena, G. (2001) Distribución de quetognatos, eufáusidos y sifonóforos en la región magallánica. Ciencia y Tecnología Marina 24, 4759.Google Scholar
Palma, S., Córdova, P., Silva, N. and Silva, C. (2014b) Biodiversity and spatial distribution of medusae in the Magellan Region (Southern Patagonian Zone). Latin American Journal of Aquatic Research 42, 11751188.Google Scholar
Palma, S., Retamal, M.C., Silva, N. and Silva, C. (2014a) Horizontal and vertical distributions of siphonophores in relation to oceanographic conditions in Chilean Patagonian fjords. Scientia Marina 78, 339351.Google Scholar
Palma, S. and Rosales, S. (1995) Composición, abundancia y distribución estacional del macroplancton de la bahía de Valparaíso. Investigaciones Marinas 23, 4966.Google Scholar
Palma, S. and Silva, N. (2004) Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-Sea Research Part II: Topical Studies in Oceanography 51, 513535.Google Scholar
Palma, S., Silva, N., Retamal, M. and Castro, L. (2011) Seasonal and vertical distributional patterns of siphonophores and medusae in the Chiloé Interior Sea, Chile. Continental Shelf Research 31, 260271.Google Scholar
Palma, S., Ulloa, R. and Linacre, L. (1999) Sifonóforos, quetognatos y eufáusidos de los canales australes entre el Golfo de Penas y Estrecho de Magallanes. Ciencia y Tecnología del Mar 22, 111142.Google Scholar
Pavez, M.A., Landaeta, M.E., Castro, L.R. and Schneider, W. (2010) Distribution of carnivorous gelatinous zooplankton in the upwelling zone of central Chile (austral spring 2001). Journal of Plankton Research 32, 10511065.Google Scholar
Pugh, P.R. (1984) The diel migrations and distribution within a mesopelagic community in the North East Atlantic. 7 Siphonophores. Progress in Oceanography 13, 461489.Google Scholar
Pugh, P.R. (1999) Siphonophorae. In Boltovskoy, D. (ed.) South Atlantic Zooplankton, Volume 1. Leiden: Backhuys Publishers, pp. 467511.Google Scholar
Purcell, J.E., Uye, S. and Lo, W.T. (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350, 153174.Google Scholar
R Core Team (2015) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/ Google Scholar
Rosenberg, P. and Palma, S. (2003) Cladóceros de los fiordos y canales patagónicos localizados entre el golfo de Penas y el estrecho de Magallanes. Investigaciones Marinas 30, 1524.Google Scholar
Sievers, H.A., Calvete, C. and Silva, N. (2002) Distribución de características físicas, masas de agua y circulación general para algunos canales australes entre el golfo de Penas y el estrecho de Magallanes (Crucero CIMAR Fiordo 2), Chile. Ciencia y Tecnolgía del Mar 25, 1339.Google Scholar
Sievers, H.A. and Silva, N. (2008) Water masses and circulation in austral Chilean channels and fjords. In Silva, N. and Palma, S. (eds) Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn. Valparaíso: Comité Oceanográfico Nacional-Pontificia Universidad Católica de Valparaíso, pp. 5358.Google Scholar
Silva, N. and Calvete, C. (2002) Características oceanográficas físicas y químicas de canales australes chilenos entre el golfo de Penas y el estrecho de Magallanes (Crucero CIMAR-Fiordo 2). Ciencia y Tecnología del Mar 25, 2388.Google Scholar
Ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.Google Scholar
Totton, A. (1965) A synopsis of Siphonophora. London: British Museum of Natural History, 230 pp.Google Scholar
Valdenegro, A. and Silva, N. (2003) Caracterización oceanográfica física y química de la zona de canales y fiordos australes de Chile entre el Estrecho de Magallanes y Cabo de Hornos (CIMAR 3 Fiordos). Ciencia y Tecnología del Mar 26, 1960.Google Scholar
Venables, W.N. and Ripley, B.D. (2002) Modern applied statistics with S. New York, NY: Springer.Google Scholar
Villenas, F., Soto, D. and Palma, S. (2009) Cambios interanuales en la biomasa y biodiversidad de zooplancton gelatinoso en el sur de Chile (Primaveras 2004 y 2005). Revista de Biología Marina y Oceanografía 44, 309324.Google Scholar
Zuur, A.F., Ieno, E.N. and Elphick, C.S. (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 314.Google Scholar
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. and Smith, G.M. (2009) Mixed effects models and extensions in ecology with R. New York, NY: Springer.Google Scholar
Supplementary material: Image

Palma supplementary material

Figure S1

Download Palma supplementary material(Image)
Image 2.6 MB