Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-14T20:32:10.797Z Has data issue: false hasContentIssue false

Seven Acantholaimus (Chromadoridae: Nematoda) species from one deep-sea sediment sample (Angola Basin, south-east Atlantic)

Published online by Cambridge University Press:  19 July 2012

Maria A. Miljutina*
Affiliation:
Senckenberg Gesellschaft für Naturforschung, Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Südstrand 44, 26382 Wilhelmshaven, Germany
Dmitry M. Miljutin
Affiliation:
Senckenberg Gesellschaft für Naturforschung, Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Südstrand 44, 26382 Wilhelmshaven, Germany
Alexei V. Tchesunov
Affiliation:
Department of Invertebrate Zoology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia
*
Correspondence should be addressed to: M.A. Miljutina, Senckenberg Gesellschaft für Naturforschung, Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Südstrand 44, 26382 Wilhelmshaven, Germany email: mmiljutina@senckenberg.de

Abstract

The genus Acantholaimus (Chromadoridae: Nematoda) is one of the most species-rich deep-sea nematode genera. The descriptions of two new species and supplemental descriptions of five known species from the Angola Basin (south-east Atlantic Ocean) and a depth of about 5500 m are given. Acantholaimus formosus sp. nov. is characterized by a spindle-shaped body with narrow elongated anterior end, the position of amphideal fovea on the apical tip of the body and by robust rugae and onchia. Acantholaimus skukinae sp. nov. is characterized by its cylindrical body shape; short outer labial, cephalic, cervical, and somatic setae; large amphideal fovea; the position of its amphideal fovea (situated relatively far from the head end); and relatively small onchia. Acantholaimus angustus was previously found in the Peru Basin (central-eastern Pacific) and the Clarion–Clipperton Nodule Province (Equatorial Pacific), about 13,000 km apart from the nearest previous location of finding. The type location of A. verscheldi is the Kenyan coast of the Indian Ocean. New specimens of this species were found about 8000 km apart from the type location. Acantholaimus akvavitus, A. iubilus and A. quintus were previously found in different parts of the Atlantic and the Pacific.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allgén, C.A. (1933) Freilebende Nematoden aus dem Trondhjemsfjord. Capita Zoologica 4, 1162.Google Scholar
Bhadury, P., Austen, M.C., Bilton, D.T., Lambshead, P.J.D., Rogers, A.D. and Smerdon, G.R. (2008) Evaluation of combined morphological and molecular techniques for marine nematode (Terschellingia spp.) identification. Marine Biology 154, 509518.CrossRefGoogle Scholar
Bik, H.M., Thomas, K.W., Lunt, D.H. and Lambshaed, P.J.D. (2010) Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distribution in free-living marine nematodes (order Enoplida). DMC Evolutionary Biology 10, 389.Google ScholarPubMed
Bussau, C. (1993) Taxonomische und ökologische Untersuchungen an Nematoden des Peru-Beckens. PhD thesis. Christian-Albrechts-Universität, Kiel, Germany.Google Scholar
De Mesel, I.D., Lee, H.J., Vanhove, S., Vincx, M. and Vanreusel, A. (2006) Species diversity and distribution within the deep-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica. Polar Biology 29, 860871.CrossRefGoogle Scholar
Decraemer, W., Gourbault, N. and Helléouet, M.-N. (2001) Cosmopolitanism among nematodes: examples from Epsilonematidae. Vie et Milieu 51, 1119.Google Scholar
Deprez, T. et al. (2005) NeMys. World Wide Web electronic publication. www.nemys.ugent.be (accessed 2 May 2012).Google Scholar
Gad, G. (2003) Discovery of new taxa and species of deep-sea Loricifera. Deep-Sea Newsletter 32, 45.Google Scholar
Gerlach, S.A. (1977) Means of meiofauna dispersal. Mikrofauna Meeresboden 61, 89103.Google Scholar
Gerlach, S.A., Schrage, M. and Riemann, F. (1979) Die Gattung Acantholaimus (Nematoda, Chromaodoridae), und Beobachtungen über einen mutmaßlichen Transportmechanismus für Spermien bei A. calathus sp. n. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 18, 3567.Google Scholar
Gourbault, N. and Vincx, M. (1985) Nématodes abyssaux (Campagne Walda du N/O ‘Jean Charcot’). VI. Le genre Acantholaimus: espèces nouvelles et étude de l'appareil reproducteur à spermatozoïdes géants. Bulletin du Muséum d'Histoire Naturelle, Paris, 4-e série 7, 611632.CrossRefGoogle Scholar
Jensen, P. (1988) Four new nematode species, abundant in the deep-sea benthos of the Norwegian Sea. Sarsia 73, 149155.CrossRefGoogle Scholar
Kröncke, I. and Türkay, M. (2003) Structural and functional aspects of the benthic communities in the deep Angola Basin. Marine Ecology Progress Series 260, 4353.CrossRefGoogle Scholar
Lambshead, P.J.D., Brown, B.J., Ferrero, T., Hawkins, L.E., Smith, C.R. and Mitchell, N.J. (2003) Biodiversity of nematode assemblages from the region of the Clarion–Clipperton Fracture Zone, an area of commercial mining interest. BMC Ecology 3. http://www.biomedcentral.com/1472-6785/3/1CrossRefGoogle ScholarPubMed
Lecroq, B., Gooday, A.J. and Pawlowski, J. (2009) Global genetic homogeneity in the deep-sea foraminiferan Epostominella exigua (Rotaliida: Pseudoparrellidae). Zootaxa 2096, 2332.CrossRefGoogle Scholar
Malyutina, M.V., Wägele, J.W. and Brenke, N. (2001) New records of little known deep-sea Echinothambematidae (Crustacea: Isopoda: Asellota) with redescription of Vemathambema elongata Menzies, 1961 and description of a new species from the Argentina Basin. Organisms, Diversity and Evolution 1, 321322.CrossRefGoogle Scholar
McIntyre, A.D. and Warwick, R.M. (1984) Meiofauna techniques. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell Scientific Publishers, pp. 217244.Google Scholar
Menzel, L., George, K.H. and Martinez Arbizu, P. (2011) Submarine ridges do not prevent large-scale dispersal of abyssal fauna: a case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida). Deep-Sea Research I 58, 839864.CrossRefGoogle Scholar
Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J. (2010) Deep-sea nematode assemblages of the Clarion–Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity 40, 115.CrossRefGoogle Scholar
Miljutina, M.A. and Miljutin, D.M. (2011) Seven new and four known species of the genus Acantholaimus (Nematoda: Chromadoridae) from the abyssal manganese nodule field (Clarion–Clipperton Fracture Zone, North-Eastern Tropical Pacific). Helgoland Marine Research. DOI 10.1007/s10152-011-0282-z.Google Scholar
Mursch, A., Brenke, N. and Wägelle, J.W. (2008) Results of the DIVA-1 Expedition of RV ‘Meteor' (Cruise M48:1): three new species of Munnopsidae Sars, 1864 from abyssal depths of the Angola Basin (Crustacea: Isopoda: Asellota). Zootaxa 1866, 493539.CrossRefGoogle Scholar
Muthumbi, A.W. and Vincx, M. (1997) Acantholaimus (Chromadoridae: Nematoda) from the Indian Ocean: description of seven species. Hydrobiology 346, 5976.CrossRefGoogle Scholar
Palmer, M.A. (1988) Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series 48, 8191.CrossRefGoogle Scholar
Rose, A., Seifried, S., Willen, E., George, K.H., Veit-Köhler, G., Bröhldick, K., Drewes, J., Moura, G., Martínez Arbizu, P. and Schminke, H. K. (2005) A method for comparing within-core alpha diversity values from repeated multicorer sampling, shown for abyssal Harpacticoida (Crustacea: Copepoda) from the Angola Basin. Organisms, Diversity and Evolution 5, 317.CrossRefGoogle Scholar
Sebastian, S., Raes, M., De Mesel, I. and Vanreusel, A. (2007) Comparison of the nematode fauna from the Weddell Sea Abyssal Plain with two North Atlantic abyssal sites. Deep-Sea Research II 54, 17271736.CrossRefGoogle Scholar
Seinhorst, J.W. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 6769.CrossRefGoogle Scholar
Soetaert, K. and Heip, C. (1995) Nematode assemblages of deep-sea and shelf break sites in the North Atlantic and Mediterranean Sea. Marine Ecology Progress Series 125, 171183.CrossRefGoogle Scholar
Soetaert, K., Vincx, M. and Heip, C. (1995) Nematode community structure along a Mediterranean shelf-slope gradient. P.S.Z.N. I: Marine Ecology 16, 189206.Google Scholar
Tchesunov, A.V. (2008) Three new species of free-living nematodes from the South-East Atlantic Abyss (DIVA I Expedition). Zootaxa 1866, 151174.CrossRefGoogle Scholar
Tietjen, J.H. (1989) Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Abyssal Plain. Deep-Sea Research 36, 15791594.CrossRefGoogle Scholar
Vanaverbeke, J., Soetaert, K., Heip, C. and Vanreusel, A. (1997) The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). Journal of Sea Research 38, 93107.CrossRefGoogle Scholar
Vanreusel, A., Clough, L., Jacobsen, K., Ambrose, W., Jivaluk, J., Ryheul, V., Herman, R. and Vincx, M. (2000) Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep-Sea Research I 47, 18551879.CrossRefGoogle Scholar
Vitiello, P. (1970) Nématodes libres marins des vases profondes du golfe du Lion. II Chromadorida. Téthys 2, 449500.Google Scholar
Vivier, M.H. (1985) Espèces du genre Acantholaimus (Nematoda, Chromadoridae, Spilipherinae). In Laubier, L. and Monniot, C. (eds) Peuplements Profonds du Golfe de Gascogne. Brest: IFREMER, pp. 331349.Google Scholar
Willen, E. (2008) Pseudotachidiidae (Copepoda: Harpacticoida) from the Angola Basin and the Antarctic deep sea, with the description of a new species of Paradanielssenia Soyer, 1970. Organisms, Diversity and Evolution 8, 249e1–e16.CrossRefGoogle Scholar