Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T23:19:01.909Z Has data issue: false hasContentIssue false

Retinal Structure in Platytroctes Apus, A Deep-Sea Fish with a Pure Rod Fovea

Published online by Cambridge University Press:  11 May 2009

N. A. Locket
Affiliation:
Department of Anatomy, Institute of Ophthalmology, Judd Street, London, W.C.I.

Extract

INTRODUCTION

The retinae of deep sea fishes have been studied by optical microscopy by several authors. Brauer's (1908) work is the most important early account, and the major recent work is that of Munk (1966a). In this monograph he reviews previous papers including that of Contino (1939), Franz (1907), Hanyu & Ali (1962), Verrier (1931), Vilter (1953, 1954a, b) and Wunder (1958), and also describes the eyes of a number of species himself. Since then Munk (1966b and 1968) has described other species by optical microscopy. Locket (1969, 1970) has used electron microscopic methods of fixation to study two species by optical and electron microscopy. These two fishes, Poromitra nigrofulvus and Sternoptyx diaphana, are not closely related and have different retinal structures. Poromitra has banks of rods in its retina, a condition first described by Vilter (1953) in Bathylagus; Sternoptyx has a single layer of long rods, a condition also found in the present species. The earlier authors worked on material collected during research expeditions and preserved in alcohol or formalin. During the 1966 biological cruise of R.R.S. ‘Discovery’ Locket was able to fix eyes from deep-sea fish with a view to electron microscopy. Though the fixation is not perfect, it does preserve much ultrastructural detail and interspecies variation in retinal structure can be studied in this material.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brauer, A., 1908. Die Tiefsee-Fische. 2. Anatomische-Teil. Wiss Ergebn. dt. Tiefsee-Exped. ‘Valdivia’, Bd. 15, Sief II, 266 pp.Google Scholar
Clarke, G. L. & Denton, E. J., 1962. Light and animal life, in The Sea. Ed. Hill, M. N., Vol. 1 (Physical oceanography) pp. 456–68. London and New York: Interscience.Google Scholar
Clarke, G. L. & Kelly, M. G., 1964. Variation in transparency and in bioluminescence on longitudinal transects in the western Indian Ocean. Bull. Inst. océanogr. Monaco, Vol. 64, No. 1319.Google Scholar
Contino, F., 1939. Das Auge des Argyropelecus hemigymnus. Morphologie, Bau, Entwicklung und Refraktion. Albrecht v. Graefes Arch. Ophthal., Bd. 140, pp. 390441.CrossRefGoogle Scholar
Denton, E. J. & Warren, F. J., 1957. The photosensitive pigments in the retinae of deep-sea fish. J. mar. biol. Ass. U.K., Vol. 36, pp. 651–62.CrossRefGoogle Scholar
Droz, B., 1963. Dynamic condition of proteins in the visual cells of rats and mice as shown by radioautography with labelled amino acids. Anat. Rec., Vol. 145, pp. 157–68.CrossRefGoogle Scholar
Echlin, P., 1964. Intracytoplasmic membranous inclusions in the blue-green alga Anacystis nidulans. Arch. Mikrobiol., Vol. 49, p. 267.CrossRefGoogle ScholarPubMed
Fletcher, A., Murphy, T. & Young, A., 1954. Solutions of two optical problems. Proc. R. Soc. (A), Vol. 223, pp. 216–25.Google Scholar
Franz, V., 1907. Bau des Eulenauges und Theorie des Teleskopauges. Biol. Zbl., Bd. 27, pp. 271–8 and 341–50.Google Scholar
Hanyu, I. & Ali, M., 1962. Intra-subspecific variation in retinal structure in Sebastes marinus mentella: Nature, Land., Vol. 196, pp. 554–6.CrossRefGoogle Scholar
Jerlov, N. G., 1968. Optical Oceanography, xiii, 194 p. Copenhagen: Elsevier.Google Scholar
Kampa, E. M. & Boden, B. P., 1957. Light generation in a sonic scattering layer. Deep-Sea Res., Vol. 4, pp. 7392.Google Scholar
Locket, N. A., 1969. The retina of Poromitra nigrofulvus Garman, an optical and electron microscope study. Expl Eye Res., Vol. 8, pp. 265–75.CrossRefGoogle Scholar
Locket, N. A., 1970. Retinal structure in a deep sea fish, Sternoptyx diaphana, Herrmann. Expl Eye Res., Vol. 9, pp. 22–7.CrossRefGoogle Scholar
Marshall, N. B., 1966. Family Scopelosauridae in Fishes of the Western North Atlantic. Mem. Sears Fdn mar. Res., Vol. 1(5), pp. 194204.Google Scholar
Meek, G. E., 1963. In discussion of Mercer, E. H. A scheme for section staining in electron microscopy. Jl R. microsc. Soc, Vol. 81, p. 184.Google Scholar
Munk, O., 1966 a. Ocular Anatomy of some deep-sea teleosts. Dana Rep., No. 70. 71 pp.Google Scholar
Munk, O., 1966 b. On the retina of Diretmus argenteus Johnson, 1863 (Diretmidae, Pisces). Videnskab. Meddr. dansk naturh. Foren., Vol. 129, pp. 7380.Google Scholar
Munk, O., 1968. On the eye and so-called preorbital light organ of the isospondylous deep-sea fish Bathylaco nigricans Goode & Bean, 1896. Galathea Rep., Vol. 9, pp. 211–18.Google Scholar
Munz, F. W., 1958. Photosensitive pigments from the retinae of certain deep-sea fishes. J. Physiol., Lond., Vol. 140, pp. 220–35.CrossRefGoogle ScholarPubMed
Nicol, J. A. C., 1960. Spectral composition of the light of the lantern-fish (Myctophum punctatum). J. mar. biol. Ass. U.K., Vol. 39, pp. 2732.CrossRefGoogle Scholar
Nilsson, S. E. G., 1964. Receptor cell outer segment development and ultrastructure of the disk membranes in the retina of the tadpole (Ranapipiens). J. Ultrastruct. Res., Vol. 11, pp. 581620.CrossRefGoogle Scholar
Pedler, C. M. H., 1963. The fine structure of the radial fibres in the reptile retina. Expl Eye Res., Vol. 2, pp. 296303.CrossRefGoogle ScholarPubMed
Pedler, C. M. H., 1965. Rods and cones, a fresh approach. Ciba Foundation Symposium on Physiology and Experimental Psychology of Colour Vision. Eds Wolstenholme, G. F. W. and Julie, Knight pp. 5283. London: J. and A. Churchill.Google Scholar
Pumphrey, R. J., 1948. The theory of the fovea. J. exp. Biol., Vol. 25, pp. 299312.CrossRefGoogle Scholar
Pumphrey, R. J., 1961. Concerning vision, in The cell and the Organism. Essays presented to Sir James Gray. Eds. Ramsay, J. A. & Wigglesworth, V. B., pp. 193208. Cambridge University Press.Google Scholar
Selvin De Testa, A., 1966. Morphological studies on the horizontal and amacrine cells of the teleost retina. Vision Res., Vol. 6, pp. 51–9.CrossRefGoogle ScholarPubMed
Verrier, M L., 1931. Sur les organes sensoriels de quelques poissons des grandes profondeurs. C. r. hebd. Seanc. Acad. Sci., Paris, T. 192, pp. 297–9.Google Scholar
Vilter, V., 1953. Existence d'une retine à plusieur mosaīques photoreceptrices chez un poisson abyssal bathypelagique, Bathylagus benedicti. C. r. Séanc. Soc. Biol., T. 147, pp. 1937–9.Google Scholar
Vilter, V., 1954 a. Differentiation fovéale dans l'appareil visuel d'un poisson abyssal, Bathylagus benedicti. C. r. Séanc. Soc. Biol., T. 148, pp. 5963.Google ScholarPubMed
Vilter, V., 1954 b. Relations neuronales dans la fovea à batonnets du Bathylagus benedicti. C. r. Séanc. Soc. Biol., T. 148, pp. 466–9.Google ScholarPubMed
Walls, G. L., 1937. Significance of the foveal depression. Archs. Ophthal., N.Y. Vol. 18, pp. 912–19.CrossRefGoogle Scholar
Walls, G. L., 1942. The vertebrate eye andits adaptive radiation, p. 785Michigan: Cranbrook Inst. Sci.Google Scholar
Weale, R. A., 1955. Binocular vision and deep sea fish. Nature, Lond., Vol. 175, p. 996.CrossRefGoogle ScholarPubMed
Wunder, W., 1958. Biologie und bau der Netzhaut beim Rotbarsch (Sebastes marinus, L.). Zool. Anz., Vol. 160, pp. 94105.Google Scholar
Young, R. W., 1968. Passage of newly formed protein through the connecting cilium of retinal rods in the frog. J. Ultrastruct. Res., Vol. 23, pp. 462–73.CrossRefGoogle Scholar
Young, R. W. & Bok, D., 1969. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol., Vol. 42, pp. 392403.CrossRefGoogle ScholarPubMed