Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-31T12:17:23.991Z Has data issue: false hasContentIssue false

Reproductive Biology of the Gregarious Mediterranean Vermetid Gastropod Dendropoma Petraeum

Published online by Cambridge University Press:  11 May 2009

M. Calvo
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
J. Templado
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
P.E. Penchaszadeh
Affiliation:
INTECMAR, Universidad Simón Bolivar, Apartado Postal 89000, Caracas 1080, Venezuela. Museo Argentino de Ciencias Naturales CONICET, Argentina

Extract

The reproductive biology of the gregarious Mediterranean vermetid gastropod Dendropoma petraeum (Mollusca: Gastropoda) has been studied in the south-eastern coast of Spain. It apparently is a gonochorisric species with the sex ratio biased toward females (71%). A broad peak of more intense reproductive activity occurs in spring months and an inactive reproductive period during winter. The gonad of the males develops about two months before those of females, and storage of sperm by females has been observed. Internal fertilization takes place after the capture of pelagic spermatophores.

The egg capsules lie free within the female mantle cavity, and females brood up to 86 capsules simultaneously (the highest number reported for any vermetid gastropod). The size of the capsules is somewhat variable and increases slightly from those containing first stages of development (mean = 678×579 μm) to those containing late stages (mean = 996×693 μm). Each egg capsule usually contains a single large egg or embryo, but sometimes two (8.2% of the capsules) or rarely three (0.24%). Production of egg capsules by females seems to be continuous throughout the reproductive period (from March to October).

The unsegmented eggs measure from 440 to 507 μm in diameter (mean = 482) and are the largest reported for any vermetid gastropod. Nurse eggs are not present, and therefore most of the intracapsular nutrition comes from the internal yolk of the embryo.

Development is lecithotrophic without a pelagic larval phase. The late intracapsular veliger stage metamorphoses within the capsule and hatching occurs at a crawling juvenile stage.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandel, K., 1976. Egg masses of 27 Caribbean opistobranchs from Santa Marta, Colombia. Studies on Neotropical Fauna and Environment, 11, 87118.CrossRefGoogle Scholar
Barash, A. & Zenziper, Z., 1985. Structural and biological adaptations of Vermetidae (Gastropoda). Bollettino Malacologico, 21, 145176.Google Scholar
Bieler, R., 1992. Gastropod phylogeny and systematics. Annual Review on Ecology and Systematics, 23, 311338.CrossRefGoogle Scholar
Bieler, R., 1995. Vermerid gastropods from São Miguel, Azores: comparative anatomy, systematic position and biogeographic affiliation. Açoreana, supplement, 173192.Google Scholar
Bieler, R. & Hadfield, M.G., 1990. Reproductive biology of the sessile gastropod Vermicularia spirata (Cerithioidea: Turritellidae). Journal of Molluscan Studies, 56, 205219.CrossRefGoogle Scholar
Boulhic, M. & Tardy, J., 1986. Ponte, dévelopement larvaire et éthologie des juveniles de Cyclope neritea (Linné, 1758). Haliotis, 15, 5158.Google Scholar
Carrick, N., 1980. Aspects of the biology of Gazameda gunni (Reeve, 1849), a viviparous mesogastropod and potential ‘indicator’ of perturbation induced by sewage pollution. Journal of the Malacological Society of Australia, 4, 254255.Google Scholar
Chambers, R.J. & McQuaid, C.D., 1994. Notes on the taxonomy, spawn and larval development of South African species of intertidal limpet genus Siphonaria (Pulmonata: Gastropoda). Journal of Molluscan Studies, 60, 263275.CrossRefGoogle Scholar
Fioroni, P., 1966. Zur Morphologie und Embryogenese des Darmtraktes und der Transitorischen Organe bei Prosobranchiern (Mollusca, Gastropoda). Revue Suisse de Zoologie, 73, 621876.CrossRefGoogle ScholarPubMed
Gallardo, C.S., 1979. Developmental pattern and adaptations for reproduction in Nucella crassilabrum and other muricacean gastropods. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 157, 453463.CrossRefGoogle ScholarPubMed
Gardner, S.M., 1989. A new vermetid from the west coast of Mexico (Gastropoda: Vermetidae). Venus, 48, 250254.Google Scholar
Gohar, M.A.F. & Eisawy, A.M., 1963. The egg masses and development of Trochus (Infundibulops) erythraeus from the Red Sea. Publications of the Marine Biological Station, AlGhardaqua, 14, 109148.Google Scholar
Hadfield, M.G., 1966. The reproductive biology of the Californian vermetid gastropods Serpulorbis squamigerus (Carpenter, 1857) and Petaloconchus montereyensis Doll, 1919. PhD Thesis, Stanford University, USA.Google Scholar
Hadfield, M.G., 1989. Latitudinal effects on juvenile size and fecundity in Petaloconchus (Gastropoda). Bulletin of Marine Science, 45, 369376.Google Scholar
Hadfield, M.G. & Hopper, C.N., 1980. Ecological and evolutionary significance of pelagic spermatophores of vermetid gastropods. Marine Biology, 57, 315325.CrossRefGoogle Scholar
Hadfield, M.G. & Iaea, D.K., 1989. Velum of encapsulated veligers of Petaloconchus (Gastropoda), and the problem of re-evolution of planktotrophic larvae. Bulletin of Marine Science, 45, 377386.Google Scholar
Hadfield, M.G., Kay, E.A., Gillette, M.U. & Lloyd, M.C., 1972. The Vermetidae (Mollusca: Gastropoda) of the Hawaiian Islands. Marine Biology, 12, 8198.CrossRefGoogle Scholar
Hopper, C.N., 1982. The ecology and reproductive biology of some Hawaiian vermetid gastropods. PhD Thesis, University of Hawaii.Google Scholar
Houbrick, R.S., 1988. Cerithioidean phylogeny. In Prosobranch phylogeny (ed. W.F., Ponder), pp. 88128. Malacological Review, supplement 4.Google Scholar
Houbrick, R S., 1990. Anatomy, reproducive biology and systematic position of Fossarus ambiguus (Linné) (Fossarinae: Planaxidae: Prosobranchia). Açoreana, 1990, supplement, 5973.Google Scholar
Hughes, R.N., 1978. The biology of Dendropoma corallinaceum and Serpulorbis natalensis, two South African vermetid gastropods. Zoological journal of the Linnean Society, 64, 111127.CrossRefGoogle Scholar
Hughes, R.N., 1979a. Colonialism in Vermetidae. In Biology and systetnatics of colonial organisms (ed. G., Larwood and B.R., Rosen), pp. 243253. Academic Press. [Systematics Association, Special Volume, no. 11.]Google Scholar
Hughes, R.N., 1979b. Notes on the reproductive strategies of the South African vermetid gastropods Dendropoma corallinaceum and Serpulorbis natalensis. Veliger, 21, 423–27.Google Scholar
Hughes, R.N. & Lewis, A.H., 1974. On the spatial distribution, feeding and reproduction of the vermetid gastropod Dendropoma maximum. Journal of Zoology, 172, 531547.CrossRefGoogle Scholar
Keen, A.M., 1961. A proposed classification of the gastropod family Vermetidae. Bulletin of the British Museum (Natural History) (Zoology), 7, 183213.Google Scholar
Keen, A.M. & Morton, J.E., 1960. Some new African species of Dendropoma (Vermetidae: Mesogastropoda). Proceedings of the Malacological Society of London, 34, 3651.Google Scholar
Kennedy, J.K., 1995. The courtship, pseudo-copulation behaviour and spermatophore of Turritella communis Risso, 1826 (Prosobranchia: Turritellidae). journal of Molluscan Studies, 61, 421434.CrossRefGoogle Scholar
Kennedy, J.K. & Keegan, B.F., 1992. The encapsular developmental sequence of the mesogastropod Turritella communis (Gastropoda: Turritellidae). Journal of the Marine Biological Association of the United Kingdom, 72, 783805.CrossRefGoogle Scholar
Laborel, J., 1987. Marine biogenic constructions in the Mediterranean. Scientific Reports of Port-Cross National Park, 13, 97126.Google Scholar
Laborel, J. & Laborel-Deguen, F., 1994. Biological indicators of relative sea-level variations and of co-seismic displacements in the Mediterranean region. Journal of Coastal Research, 10, 395415.Google Scholar
Lacaze-Duthiers, H., 1860. Mémoire sur l'anatomie et l'embryogénie des vermets (Vermetus triqueter et V. semisurrectus Phil.). Annales des Sciences Naturelles, (Zoologie), 13, 209296.Google Scholar
Miloslavich, P.A. & Penchaszadeh, P.E., 1992. Reproductive biology of Vermetus sp. and Dendropoma corrodens (Orbigny, 1842): two vermetid gastropods from the southern Caribbean. Veliger, 35, 7888.Google Scholar
Morton, J.E., 1951. The structure and adaptation of the New Zealand Vermetidae. Proceedings of the Royal Society of New Zealand, 79, 151.Google Scholar
Morton, J.E., 1965. Form and function in the evolution of the Vermetidae. Bulletin of the British Museum (Natural History) (Zoology), 11, 585630.Google Scholar
Nishiwaki, S., 1969. Seasonal size variations of the pallial slit in female Serpulorbis imbricatus (Prosobranchia, Vermetidae). Science Reports of the Tokyo Kyoiku Daigaku. Section B, 14, 6978.Google Scholar
Pelseneer, P., 1926. La proportion relative des sexes chez les animaux et particulièrement chez les mollusques. Bulletin de l'Académie Royale de Belgique Classe des Sciences, 8, 1258.Google Scholar
Rivest, B.R., 1983. Development and the influence of nurse egg allotment on hatching size in Searlesia dira (Reeve, 1846) (Prosobranchia: Buccinidae). Journal of Experimental Marine Biology and Ecology, 69, 217241.CrossRefGoogle Scholar
Robertson, R., 1989. Spermatophores of aquatic non-stylommatophoran gastropods: a review with new data on Heliacus (Architectonicidae). Malacologia, 30, 341364.Google Scholar
Safriel, U.N., 1966. Recent vermetid formation on the Mediterranean coast of Israel. Proceedings of the Malacological Society of London, 37, 2734.Google Scholar
Safriel, U.N., 1974. Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science, New York, 186, 11131115.CrossRefGoogle ScholarPubMed
Safriel, U.N., 1975. The role of vermetid gastropods in the formation of Mediterranean and Atlantic reefs. Oecologia, 20, 85101.CrossRefGoogle ScholarPubMed
Safriel, U.N. & Hadfield, M.G., 1988. Sibling speciation by life-history divergence in Dendropoma (Gastropoda; Vermetidae). Biological Journal of the Linnean Society, 35, 113.CrossRefGoogle Scholar
Salensky, M., 1887. Études sur le dévelopement du Vermet. Archives de Biologie, 6, 655759.Google Scholar
Scheuwimmer, A., 1979. Sperm transfer in the sessile gastropod Serpulorbis (Prosobranchia: Vermetidae). Marine Ecology Progress Series, 1, 6570.CrossRefGoogle Scholar
Scuderi, D., 1995. Il genere Dendropoma (Gastropoda: Vermetidae) nel Mediterraneo. Bolletino Malacologico, 31, 16.Google Scholar
Spight, T., 1976. Hatching size and the distribution of nurse eggs among prosobranch embryos. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 150, 491499.CrossRefGoogle Scholar
Si, Tchang, 1931. Contribution a l'étude des mollusqus opisthobranches de la côte provençale. PhD thesis, Université de Lyon, France.Google Scholar
Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates with special reference to the planktonic larvae in the Sound (Øresund). Meddelelser fra Kommissionen for Danmarks Fiskeri-og Havundersøgelser. Serie: Plankton, 4, 1523.Google Scholar