Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T08:45:58.278Z Has data issue: false hasContentIssue false

Range extension of invasive Cancer irroratus and native Carcinus maenas polewards in the Ascophyllum-dominated intertidal zone in north-west Iceland

Published online by Cambridge University Press:  12 February 2024

Jón T. Magnússon
Affiliation:
Marine & Freshwater Research Institute, Fornubúðir 4, Hafnarfjörður, Iceland Department of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
Stephen J. Hawkins
Affiliation:
Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK The Marine Biological Association of the UK, Citadel Hill, Plymouth, UK School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
Lilja Gunnarsdóttir
Affiliation:
Marine & Freshwater Research Institute, Fornubúðir 4, Hafnarfjörður, Iceland Department of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
Jörundur Svavarsson
Affiliation:
Department of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
Karl Gunnarsson*
Affiliation:
Marine & Freshwater Research Institute, Fornubúðir 4, Hafnarfjörður, Iceland
*
Corresponding author: Karl Gunnarsson; Email: karl.gunnarsson@hafogvatn.is

Abstract

The rocky intertidal zone of sheltered shores in Breiðafjörður, north-west Iceland is dominated by monospecific stands of canopy-forming brown algae Ascophyllum nodosum, which provide habitat for mobile organisms and has been subjected to long-standing rotational harvesting. We investigated the assemblage composition of little-studied mobile brachyuran crabs in this area, to track distributional shifts in a native species responding to climate change and extent of occupancy of the intertidal by a primarily subtidal invasive non-native species. Potential interactive effects of seaweed harvesting were explored. Breiðafjörður was compared with two reference sites in Faxaflói, south-west Iceland. The study revealed clear poleward expansion of the native European green crab Carcinus maenas in the region, displacing the native spider crab Hyas araneus particularly at mid-shore levels. The invasive non-native Atlantic rock crab Cancer irroratus had negligible occupancy in the intertidal zone, indicating limited effects on the intertidal crab assemblage, composition, and abundance. The current harvesting regime of A. nodosum in Breiðafjörður did not affect the composition and abundance of the brachyuran crab assemblage in the rocky intertidal zone. H. araneus is likely being squeezed by displacement subtidally by C. irroratus, and intertidally by C. maenas. Overall, we provide insights into the potential interactions between climate change, invasive species, and human activities in the rocky intertidal zone.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Wazzan, Z, Giménez, L, Behbehani, M and Le Vay, L (2019) Trophic niche separation in sympatric rocky shore crabs. Journal of the Marine Biological Association of the United Kingdom 99, 11711180.CrossRefGoogle Scholar
Ang, PO, Sharp, GJ and Semple, RE (1996) Comparison of the structure of populations of Ascophyllum nodosum (Fucales, Phaeophyta) at sites with different harvesting histories. In Lindstrom, SC and Chapman, DJ (eds), Fifteenth International Seaweed Symposium. Dordrecht: Springer Netherlands, pp. 179184.Google Scholar
Bellard, C, Bertelsmeier, C, Leadley, P, Thuiller, W and Courchamp, F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15, 365377.CrossRefGoogle ScholarPubMed
Bellard, C, Thuiller, W, Leroy, B, Genovesi, P, Bakkenes, M and Courchamp, F (2013) Will climate change promote future invasions? Global Change Biology 19, 37403748.CrossRefGoogle ScholarPubMed
Bertness, MD, Leonard, GH, Levine, JM, Schmidt, PR and Ingraham, AO (1999) Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 27112726.CrossRefGoogle Scholar
Boaden, PJS and Dring, MT (1980) A quantitative evaluation of the effects of Ascophyllum harvesting on the littoral ecosystem. Helgoländer Meeresuntersuchungen 33, 700710.CrossRefGoogle Scholar
Borges, D, Araujo, R, Azevedo, I and Pinto, IS (2020) Sustainable management of economically valuable seaweed stocks at the limits of their range of distribution: Ascophyllum nodosum (Phaeophyceae) and its southernmost population in Europe. Journal of Applied Phycology 32, 13651375.CrossRefGoogle Scholar
Brazão, SAE, Silva, AC and Boaventura, DM (2009) Predation: a regulating force of intertidal assemblages on the central Portuguese coast? Journal of the Marine Biological Association of the United Kingdom 89, 15411548.CrossRefGoogle Scholar
Byers, JE (2009) Competition in marine invasions. In Rilov, G and Crooks, JA (eds), Biological Invasions in Marine Ecosystems, Ecological Studies, vol. 204. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 245260.Google Scholar
Chen, C, Hill, JK, Ohlemüller, R, Roy, DB and Thomas, CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science (New York, N.Y.) 333, 10241026.CrossRefGoogle ScholarPubMed
Cheung, WWL, Lam, VWY, Sarmiento, JL, Kearney, K, Watson, R and Pauly, D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10, 235251.Google Scholar
Clavero, M, Franch, N, Bernardo-Madrid, R, López, V, Abelló, P, Queral, JM and Mancinelli, G (2022) Severe, rapid and widespread impacts of an Atlantic blue crab invasion. Marine Pollution Bulletin 176, 113479.CrossRefGoogle ScholarPubMed
Einarsson, ST (1988) The distribution and density of the common spider crab (Hyas araneus) in Icelandic waters. ICES 1988 C.M. 1988/K:28:25.Google Scholar
Ens, NJ, Harvey, B, Davies, MM, Thomson, HM, Meyers, KJ, Yakimishyn, J, Lee, LC, McCord, ME and Gerwing, TG (2022) The green wave: reviewing the environmental impacts of the invasive European green crab (Carcinus maenas) and potential management approaches. Environmental Reviews 30, 306322.Google Scholar
Epifanio, CE (2013) Invasion biology of the Asian shore crab Hemigrapsus sanguineus: a review. Journal of Experimental Marine Biology and Ecology 441, 3349.CrossRefGoogle Scholar
Falk-Petersen, J, Renaud, P and Anisimova, N (2011) Establishment and ecosystem effects of the alien invasive red king crab (Paralithodes camtschaticus) in the Barents Sea – a review. ICES Journal of Marine Science 68, 479488.CrossRefGoogle Scholar
Fatemi, SMR, Vosoughi, G, Ghavam, MP and Bahri, F (2012) Diversity and distribution of true crabs (Brachyura) from intertidal rocky shores of Qeshm Island, Persian Gulf. International Journal of Marine Science 2, 115120.Google Scholar
Fegley, J (2001) Ecological implications of rockweed, Ascophyllum nodosum (L.) Le Jolis, harvesting (PhD dissertation). University of Maine, USA. Retrieved from https://search.proquest.com/openview/fc78b6352515d84693903bed41cff602/1?pq-origsite=gscholar&cbl=18750&diss=yGoogle Scholar
Firth, LB and Hawkins, SJ (2011) Introductory comments – global change in marine ecosystems: patterns, processes and interactions with regional and local scale impacts. Journal of Experimental Marine Biology and Ecology 400, 16.Google Scholar
Flores, AV and Paula, J (2001) Intertidal distribution and species composition of brachyuran crabs at two rocky shores in Central Portugal. Hydrobiologia 449, 171177.Google Scholar
Fukui, Y and Wada, K (1986) Distribution and reproduction of four intertidal crabs (Crustacea, Brachyura) in the Tonda River Estuary, Japan. Marine Ecology Progress Series 30, 229241.CrossRefGoogle Scholar
Galan, A and Eiríksson, H (2009) Tösku-, tann- og klettakrabbar. Náttúrufræðingurinn 77, 101106.Google Scholar
Gehrels, H, Knysh, KM, Boudreau, M, Thériault, M-H, Courtenay, SC, Cox, R and Quijón, PA (2016) Hide and seek: habitat-mediated interactions between European green crabs and native mud crabs in Atlantic Canada. Marine Biology 163, 152.CrossRefGoogle Scholar
Gendron, L, Merzouk, A, Bergeron, P and Johnson, LE (2018) Managing disturbance: the response of a dominant intertidal seaweed Ascophyllum nodosum (L.) Le Jolis to different frequencies and intensities of harvesting. Journal of Applied Phycology 30, 18771892.CrossRefGoogle Scholar
Georgsdóttir, GI, Ottósson, JG, Gunnarsson, K, Kristinsdóttir, S and Guðmundsson, (2016) Vistgerðir í fjöru. In Ottósson, JG, Sveinsdóttir, A and Harðardóttir, M (eds), Vistgerðir á Íslandi, vol. 54. Fjölrit Náttúrufræðistofnunar, pp. 214279.Google Scholar
Gíslason, ÓS, Halldórsson, HP, Pálsson, MF, Pálsson, S, Davíðsdóttir, B and Svavarsson, J (2014) Invasion of the Atlantic rock crab (Cancer irroratus) at high latitudes. Biological Invasions 16, 18651877.CrossRefGoogle Scholar
Gíslason, ÓS, Jónasson, JP, Pálsson, S, Svavarsson, J and Halldórsson, HP (2017) Population density and growth of the newly introduced Atlantic rock crab Cancer irroratus Say, 1817 (Decapoda, Brachyura) in Iceland: a four-year mark-recapture study. Marine Biology Research 13, 198209.CrossRefGoogle Scholar
Gíslason, ÓS, Pálsson, S, Jónasson, JP, Guls, HD, Svavarsson, J and Halldórsson, HP (2021) Population dynamics of three brachyuran crab species (Decapoda) in Icelandic waters: impact of recent colonization of the Atlantic rock crab (Cancer irroratus). ICES Journal of Marine Science 78, 534544.Google Scholar
Goldsmit, J, McKindsey, CW, Schlegel, RW, Stewart, DB, Archambault, P and Howland, KL (2020) What and where? Predicting invasion hotspots in the Arctic marine realm. Global Change Biology 26, 47524771.CrossRefGoogle ScholarPubMed
Gollety, C, Thiebaut, E and Davoult, D (2011) Characteristics of the Ascophyllum nodosum stands and their associated diversity along the coast of Brittany, France. Journal of the Marine Biological Association of the United Kingdom 91, 569577.Google Scholar
Grosholz, ED and Ruiz, GM (1996) Predicting the impact of introduced marine species: lessons from the multiple invasions of the European green crab Carcinus maenas. Biological Conservation 78, 5966.CrossRefGoogle Scholar
Grosholz, ED, Ruiz, GM, Dean, CA, Shirley, KA, Maron, JL and Connors, PG (2000) The impacts of a nonindigenous marine predator in a California bay. Ecology 81, 12061224.Google Scholar
Gunnarsson, K, Burgos, JM, Gunnarsdóttir, L, Egilsdóttir, S, Georgsdóttir, GI and Pajuelo, VF (2019) Klóþang í Breiðafirði, útbreiðsla og magn. Haf- og vatnarannsóknir 2019–16, 120.Google Scholar
Gunnarsson, K, Thorarinsdóttir, GG and Gíslason, ÓS (2015) Framandi sjávarlífverur við Ísland. Náttúrufræðingurinn 85, 414.Google Scholar
Guo, Q, Cen, X, Song, R, McKinney, ML and Wang, D (2021) Worldwide effects of non-native species on species–area relationships. Conservation Biology 35, 711721.Google Scholar
Hänfling, B, Edwards, F and Gherardi, F (2011) Invasive alien Crustacea: dispersal, establishment, impact and control. BioControl 56, 573595.CrossRefGoogle Scholar
Harley, CDG, Randall Hughes, A, Hultgren, KM, Miner, BG, Sorte, CJB, Thornber, CS, Rodriguez, LF, Tomanek, L and Williams, SL (2006) The impacts of climate change in coastal marine systems: climate change in coastal marine systems. Ecology Letters 9, 228241.CrossRefGoogle ScholarPubMed
Hartnoll, RG (1963) The biology of Manx spider crabs. Proceedings of the Zoological Society of London 141, 423496.Google Scholar
Hauksson, E (1977) Útbreiðsla og kjörsvæði fjörudýra í Breiðafirði. Náttúrufræðingurinn 47, 88102.Google Scholar
Hawkins, SJ, Evans, AJ, Mieszkowska, N, Adams, LC, Bray, S, Burrows, MT, Firth, LB, Genner, MJ, Leung, KMY, Moore, PJ, Pack, K, Schuster, H, Sims, DW, Whittington, M and Southward, EC (2017) Distinguishing globally-driven changes from regional- and local-scale impacts: the case for long-term and broad-scale studies of recovery from pollution. Marine Pollution Bulletin 124, 573586.Google Scholar
Hawkins, S, Moore, P, Burrows, M, Poloczanska, E, Mieszkowska, N, Herbert, R, Jenkins, S, Thompson, R, Genner, M and Southward, A (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Research 37, 123133.CrossRefGoogle Scholar
Hawkins, SJ, Pack, KE, Firth, LB, Mieszkowska, N, Evans, AJ, Martins, GM, Åberg, P, Adams, LC, Arenas, F, Boaventura, DM, Bohn, K, Borges, CDG, Castro, JJ, Coleman, RA, Crowe, TP, Cruz, T, Davies, MS, Epstein, G, Faria, J, Ferreira, JG, Frost, NJ, Griffin, JN, Hanley, M, Herbert, RJH, Hyder, K, Johnson, MP, Lima, FP, Masterson-Algar, P, Moore, PJ, Moschella, PS, Notman, GM, Pannacciulli, FG, Ribeiro, PA, Santos, AM, Silva, ACF, Skov, MW, Sugden, H, Vale, M, Wangkulangkul, K, Wort, EJG, Thompson, RC, Hartnoll, RG, Burrows, MT and Jenkins, SR (2019) The intertidal zone of the north-east Atlantic region: pattern and process. In Hawkins, SJ, Bohn, K, Firth, LB and Williams, GA (eds), Interactions in the Marine Benthos, vol. 1. Cambridge, UK: Cambridge University Press, pp. 746.CrossRefGoogle Scholar
Helmuth, B, Broitman, BR, Blanchette, CA, Gilman, S, Halpin, P, Harley, CD, O'Donnell, MJ, Hofmann, GE, Menge, B and Strickland, D (2006) Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecological Monographs 76, 461479.Google Scholar
Hobbs, RJ and Huenneke, LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conservation Biology 6, 324337.CrossRefGoogle Scholar
Howard, AE (1982) The distribution and behaviour of ovigerous edible crabs (Cancer pagurus), and consequent sampling bias. ICES Journal of Marine Science 40, 259261.Google Scholar
Ingólfsson, A (1996) The distribution of intertidal macrofauna on the coasts of Iceland in relation to temperature. Sarsia 81, 2944.CrossRefGoogle Scholar
Ingólfsson, A (2004) Community structure and zonation patterns of rocky shores at high latitudes: an interocean comparison: rocky shore communities at high latitudes. Journal of Biogeography 32, 169182.CrossRefGoogle Scholar
Ingólfsson, A (2006) The intertidal seashore of Iceland and its animal communities. The Zoology of Iceland I, 185.Google Scholar
Ingólfsson, A and Hawkins, SJ (2008) Slow recovery from disturbance: a 20 year study of Ascophyllum canopy clearances. Journal of the Marine Biological Association of the United Kingdom 88, 689691.CrossRefGoogle Scholar
Jenkins, SR, Norton, TA and Hawkins, SJ (2004) Long term effects of Ascophyllum nodosum canopy removal on mid shore community structure. Journal of the Marine Biological Association of the United Kingdom 84, 327329.CrossRefGoogle Scholar
Jensen, G, McDonald, P and Armstrong, D (2002) East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Marine Ecology Progress Series 225, 251262.CrossRefGoogle Scholar
Johnston, EL, Dafforn, KA, Clark, GF, Rius, M and Floerl, O (2017) Anthropogenic activities promoting the establishment and spread of non-indigenous species post-arrival. Oceanography and Marine Biology, Annual review 55, 389419.Google Scholar
Kelley, AL, de Rivera, CE and Buckley, BA (2013) Cold tolerance of the invasive Carcinus maenas in the east Pacific: molecular mechanisms and implications for range expansion in a changing climate. Biological Invasions 15, 22992309.CrossRefGoogle Scholar
Kelly, L, Collier, L, Costello, MJ, Diver, M, McGarvey, S, Kraan, S, Morrissey, J and Guiry, MD (2001) Impact assessment of hand and mechanical harvesting of Ascophyllum nodosum on regeneration and biodiversity. Marine Resources Series 19, 157.Google Scholar
Lauzon-Guay, JS, Ugarte, RA, Morse, BL and Robertson, CA (2021) Biomass and height of Ascophyllum nodosum after two decades of continuous commercial harvesting in eastern Canada. Journal of Applied Phycology 33, 16951708.Google Scholar
Lohrer, AM and Whitlatch, RB (2002) Relative impacts of two exotic brachyuran species on blue mussel populations in long Island sound. Marine Ecology Progress Series 227, 135144.CrossRefGoogle Scholar
Lotze, HK, Milewski, I, Fast, J, Kay, L and Worm, B (2019) Ecosystem-based management of seaweed harvesting. Botanica Marina 62, 395409.Google Scholar
MacDonald, JA, Roudez, R, Glover, T and Weis, JS (2007) The invasive green crab and Japanese shore crab: behavioral interactions with a native crab species, the blue crab. Biological Invasions 9, 837848.CrossRefGoogle Scholar
Matheson, K, McKenzie, CH, Gregory, RS, Robichaud, DA, Bradbury, IR, Snelgrove, PVR and Rose, GA (2016) Linking eelgrass decline and impacts on associated fish communities to European green crab Carcinus maenas invasion. Marine Ecology Progress Series 548, 3145.CrossRefGoogle Scholar
McDonald, PS, Jensen, GC and Armstrong, DA (2001) The competitive and predatory impacts of the nonindigenous crab Carcinus maenas (L.) on early benthic phase Dungeness crab Cancer magister Dana. Journal of Experimental Marine Biology and Ecology 258, 3954.CrossRefGoogle Scholar
Molnar, JL, Gamboa, RL, Revenga, C and Spalding, MD (2008) Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment 6, 485492.CrossRefGoogle Scholar
Parker, IM, Simberloff, D, Lonsdale, WM, Goodell, K, Wonham, M, Kareiva, PM, Williamson, MH, Von Holle, B, Moyle, PB, Byers, JE and Goldwasser, L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1, 319.Google Scholar
Parmesan, C and Yohe, G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 3742.Google Scholar
Poloczanska, ES, Burrows, MT, Brown, CJ, García Molinos, J, Halpern, BS, Hoegh-Guldberg, O, Kappel, CV, Moore, PJ, Richardson, AJ, Schoeman, DS and Sydeman, WJ (2016) Responses of marome organisms to climate change across oceans. Frontiers in Marine Science 3, 62. doi: 10.3389/fmars.2016.00062Google Scholar
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at https://www.R-project.org/Google Scholar
Ribero, L, Lim, PE, Ramli, R and Polgar, G (2020) Assemblage structure, distribution and habitat type of the grapsoid crabs (Brachyura: Grapsoidea) of the coastal forested swamps of northern Borneo. Regional Studies in Marine Science 37, 101323.CrossRefGoogle Scholar
Ricciardi, A, Hoopes, MF, Marchetti, MP and Lockwood, JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs 83, 263282.Google Scholar
Rilov, G (2009) Predator–prey interactions of marine invaders. In Rilov, G and Crooks, JA (eds), Biological Invasions in Marine Ecosystems, Ecological Studies, vol. 204. Berlin, Heidelberg: Springer, pp. 261285.Google Scholar
RStudio Team (2022) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. Available at http://www.rstudio.com/Google Scholar
Schmidt, A, Coll, M, Romanuk, T and Lotze, HK (2011) Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Marine Ecology Progress Series 437, 5168.CrossRefGoogle Scholar
Seeley, RH and Schlesinger, WH (2012) Sustainable seaweed cutting? The rockweed (Ascophyllum nodosum) industry of Maine and the Maritime Provinces. Annals of the New York Academy of Sciences 1249, 84103.CrossRefGoogle ScholarPubMed
Shields, J (1991) The reproductive ecology and fecundity of cancer crabs. In Kuris, A (ed.), Crustacean Egg Production, vol. 1. Leiden, The Netherlands: CRC Press, pp. 193213.Google Scholar
Sigurdsson, GM and Rochette, R (2013) Predation by green crab and sand shrimp on settling and recently settled American lobster postlarvae. Journal of Crustacean Biology 33, 1014.CrossRefGoogle Scholar
Silva, AC, Boaventura, DM, Thompson, RC and Hawkins, SJ (2014) Spatial and temporal patterns of subtidal and intertidal crabs excursions. Journal of Sea Research 85, 343348.CrossRefGoogle Scholar
Silva, AC, Brazão, S, Hawkins, SJ, Thompson, RC and Boaventura, D (2009) Abundance, population structure and claw morphology of the semi-terrestrial crab Pachygrapsus marmoratus (Fabricius, 1787) on shores of differing wave exposure. Marine Biology 156, 25912599.Google Scholar
Sæmundsson, B (1936) Tífættir skjaldkrabbar íslenzkir (Thoracostraca Decapoda Islandiae). Náttúrufræðingurinn 6, 113131.Google Scholar
Stagnol, D, Renaud, M and Davoult, D (2013) Effects of commercial harvesting of intertidal macroalgae on ecosystem biodiversity and functioning. Estuarine, Coastal and Shelf Science 130, 99110.CrossRefGoogle Scholar
Van der Putten, WH, Macel, M and Visser, ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 20252034.Google Scholar
Vasquez, JA (1995) Ecological effects of brown seaweed harvesting. Botanica Marina 38, 251257.CrossRefGoogle Scholar
Williams, PJ, MacSween, C and Rossong, M (2009) Competition between invasive green crab (Carcinus maenas) and American lobster (Homarus americanus). New Zealand Journal of Marine and Freshwater Research 43, 2933.Google Scholar
Supplementary material: File

Magnússon et al. supplementary material 1

Magnússon et al. supplementary material
Download Magnússon et al. supplementary material 1(File)
File 305.5 KB
Supplementary material: File

Magnússon et al. supplementary material 2

Magnússon et al. supplementary material
Download Magnússon et al. supplementary material 2(File)
File 19.8 KB