Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T13:43:27.767Z Has data issue: false hasContentIssue false

A Physiological Comparison of the Symbiotic Alga Platymonas Convolutae and its Free-Living Relatives

Published online by Cambridge University Press:  11 May 2009

G. W. Gooday
Affiliation:
Department of Botany, Leeds University1

Extract

Platymonas convolutae Parke et Manton is the natural algal partner of the symbiotic worm Convoluta roscoffensis Graff (Parke & Manton 1967). Recent work by Provasoli, Yamasu & Manton (1968) has shown that although several algae can form a symbiotic relationship with the worm if supplied in unialgal culture, the natural symbiont is the most effective and is able to eliminate competitors. The alga can be cultured in a denned medium away from its partner, and this paper presents some physiological characteristics of the alga in pure culture in comparison with some of its free-living relatives, in particular the type species of the genus Platymonas, P. tetrathele G. S. West. The present investigation has been concerned mainly with the uptake of carbohydrates and the utilization of organic nitrogen. Other aspects that are included are the excretion of metabolites into the medium and the soluble carbohydrates found within the algae. In addition, culturing the algae has revealed a difference in behaviour of possible relevance to the symbiotic relationship.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, S. C., 1962. Utilization of glucose by Astasia longa. J. Protozool., Vol. 9, pp. 395400.Google Scholar
Birdsey, E. & Lynch, V. H., 1962. Utilization of organic nitrogen compounds by unicellular algae. Science, N.Y., Vol. 137, pp. 763–4.Google Scholar
Chapman, L. F., Cirillo, V. P. & Jahn, T. L., 1965. Permeability to sugars and fatty acids in Polytoma obtusum. J. Protozool., Vol. 12, pp. 4751.Google Scholar
Craigie, J. S., McLachlan, J., Majak, W., Ackman, R. C. & Tocher, C. S., 1966. Photosynthesis in algae. II. Green algae with special reference to Dunaliella spp. and Tetraselmis spp. Can. J. Bot., Vol. 44, pp. 1247–54.Google Scholar
Drew, E. A. & Smith, D. C., 1967. Studies in the physiology of lichens. VII. The physiology of the Nostoc symbiont of Peltigera polydactyla compared with cultured and free-living forms. New Phytol., Vol. 66, pp. 379–88.Google Scholar
Florkin, M. & Duchateau, G., 1943. Les formes du système enzymatique de l'uricolyse et revolution du catabolisme purique chez les animaux. Archs int. Physiol., Vol. 53, pp. 267307.Google Scholar
Joshi, M. D. & Jagannathan, V., 1966. Hexokinase. I. Brain. Meth. Enzym., Vol. 9, pp. 371–5.Google Scholar
Keeble, F. & Gamble, F. W., 1907. The origin and nature of the green cells of Convoluta roscoffensis. Q. Jl microsc. Sci., Vol. 51, pp. 167219.Google Scholar
Langdon, R. G., 1966. Glucose 6-phosphate dehydrogenase from erythrocytes. Meth. Enzym., Vol. 9, pp. 126–31.Google Scholar
Mahler, H. R., Hübscher, G. & Baum, H., 1955. Studies in uricase. I. Preparation, purification and properties of a cuproprotein. J. biol. Chem., Vol. 216, pp. 625–41.Google Scholar
McLaughlin, J. J. A., 1958. Euryhaline chrysomonads: Nutrition and toxigenesis in Prymnesium parvum, with notes on Isochrysis galbana and Monochrysis lutheri. J. Protozool., Vol. 75, pp. 7581.Google Scholar
Muscatine, L., 1967. Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, N.Y., Vol. 156, pp. 516–19.Google Scholar
Parke, M. & Dixon, P. S., 1968. Check-list of British marine algae—second revision. J. mar. biol. Ass. U.K., Vol. 48, pp. 783832.Google Scholar
Parke, M. & Manton, I., 1967. The specific identity of the algal symbiont in Convoluta roscoffensis. J. mar. biol. Ass. U.K., Vol. 47, pp. 445–64.Google Scholar
Provasoli, L., Yamasu, T. & Manton, I., 1968. Experiments on the resynthesis of symbiosis in Convoluta roscoffensis with different flagellate cultures. J. mar. biol. Ass. U.K., Vol. 48, pp. 465–79.Google Scholar
Rhoush, A. H. & Domnas, A. J., 1956. Induced biosynthesis of uricase in yeast. Science, N.Y., Vol. 124, pp. 125–6.Google Scholar
Smith, D., Muscatine, L. & Lewis, D., 1969. Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol. Rev., 44, pp. 1790.Google Scholar
Sokolski, W. T., Ferguson, H. J. & Goff, J., 1962. The effect of wetting agents on the permeability of Ochromonas danica. J. Protozool., Vol. 9, pp. 293–6.Google Scholar
Sweeley, C. C., Bentley, R., Makita, M. & Wells, W. W., 1963. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J. Am. chem. Soc., pp. 2497–507.Google Scholar
Warburg, O. & Christian, W., 1941. Isolierung und Kristallisation des Gärungs-ferments Enolase. Biochem. Z., Bd. 310, pp. 384421.Google Scholar