Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-29T06:43:09.154Z Has data issue: false hasContentIssue false

Morphological Variability in Illex Coindetii (Cephalopoda: Ommastrephidae) Along the North-West Coast of Africa

Published online by Cambridge University Press:  11 May 2009

V. Hernández-García
Affiliation:
Departamento de Biología, Universidad de Las Palmas de Gran Canaria, Apartado 550, Las Palmas de Gran Canaria, Canary Islands, Spain. E-mail: vicente.hernandez@biologia.ulpgc.es, josejuan.castro@biologia.ulpgc.es
J.J. Castro
Affiliation:
Departamento de Biología, Universidad de Las Palmas de Gran Canaria, Apartado 550, Las Palmas de Gran Canaria, Canary Islands, Spain. E-mail: vicente.hernandez@biologia.ulpgc.es, josejuan.castro@biologia.ulpgc.es

Extract

This paper gives morphometric variations and dorsal mantle length–total weight (DML-TW) relationships for Illex coindetii in the eastern Central Atlantic area. Positive allometry was observed in males and negative in females of the species. The most variable body measurements between males and females were width and perimeter of the head. In the study area, divergence of morphometric measurement starts at 95 mm. The point of divergence, however, varies with latitude; fluctuating from 104 mm in the north (Morocco and Sahara) to 76 mm in the central area (Mauritania and north of Senegal) and 73 mm in the south (Gulf of Guinea).

The relationships between DML and TW showed that sexual dimorphism due to differential growth between males and females starts to occur at 56 mm ML. The starting point of sexual dimorphism (56 mm) varies according to the zone; the higher the latitude, the later it occurs. Thus, sexual dimorphism occurs at 49 mm in the south (Gulf of Guinea), at 54 mm in the central area (Mauritania and north of Senegal) and at 74 mm in the north (Morocco and Sahara). Females grow larger than males, but males were heavier at any given length. As latitude decreased, a slow down in the increase in weight-at-length was observed in both sexes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhipkin, A., 1996. Geographical variation in growth and maturation of the squid Illex coindetii (Oegopsida, Ommastrephidae) off the north-west African coast. Journal of the Marine Biological Association of the United Kingdom, 76, 10911106.Google Scholar
Bas, C., 1959. Consideraciones acerca del crecimiento de la caballa (Scomber scombrus L.) en el Mediterráneo Espaol. Parte I. Investigación Pesquera, 14, 65113.Google Scholar
Beck, P.C., Dawe, E.G. & Drew, J., 1994. An update of the fishery for short-finned squid (Illex illecebrosus) in the Newfoundland area during 1989–1993 with descriptions of some biological characteristics and temperature trends. Northwest Atlantic Fisheries Organization, Scientific Council Research Document, no. 94–37, 114.Google Scholar
Belcari, P., 1996. Length–weight relationships in relation to sexual maturation of Illex coindetii (Cephalopoda: Ommastrephidae) in the northern Tyrrhenian Sea (western Mediterranean). Scientia Marina, 60, 379384.Google Scholar
Beverton, R.J.H. & Holt, S.S., 1957. On the dynamic of exploited fish populations. Fishery Investigations, Series 2. MAFF, London, 19, 1533.Google Scholar
Boyle, P.R., 1987. Cephalopod life cycles, vol. 2. London: Academic Press.Google Scholar
Brett, J.R., 1979. Environmental factors and growth. In Fish physiology, vol. 8 (ed. W.J., Hoar et al.), pp. 599675. New York: Academic Press.Google Scholar
Calderon, L.E., 1989. Modelo de las variaciones del crecimiento de la bacaladilla Micromessitius poutassou del Mediterráneo occidental y su relación con el ambiente. Tesis doctoral, Universidad Politécnica de Cataluña, Spain.Google Scholar
Dawe, E.G., 1988. Length-weight relationships for short-finned squid in Newfoundland and the effect of diet on condition and growth. Transactions of the American Fishery Society, 117, 591599.2.3.CO;2>CrossRefGoogle Scholar
Dawe, E.G. & Warren, W.G., 1993. Recruitment of short-finned squid in the northwest Atlantic Ocean and some environmental relationships. Journal of Cephalopod Biology, 2, 121.Google Scholar
Forsythe, J.W. & Van Heukelem, W.F., 1987. Growth. In Cephalopod life cycles, vol. 2 (ed. P.R., Boyle), pp. 135156. London: Academic Press.Google Scholar
Frank, P.W., 1975. Latitudinal variation in the life history features of the black turban snail Tegula funebralis (Prosobranchia: Trochidae). Marine Biology, 31, 181192.Google Scholar
González, A.F., 1994. Bioecología de Illex coindetii (Vérany, 1839) (Cephalopoda, Ommastrephidae) de las Aguas de Galicia. Tesis doctoral, Universidad de Vigo, Spain.Google Scholar
González, A.F., Rasero, M. & Guerra, A., 1992. Illex coindetii and Todaropsis eblanae (Cephalopoda, Ommastrephidae): their present status in Galician fisheries. International Council for the Exploration of the Sea (CM Papers and Reports), CM 1992/K:5, 114.Google Scholar
Guerra, A., 1992. Mollusca, Cephalopoda. In Fauna lbérica, vol. 1 (ed. M.A., Ramos et al.), pp. 1327. Madrid: Museo Nacional de Ciencias Narurales.Google Scholar
Gulland, J.A., 1985. Fish stock assessment. A manual of basic methods. Chichester: John Wiley & Sons.Google Scholar
Hernández-García, V., 1995. Contributiín al conocimiento bioecológico de la familia Ommastrephidae Steenstrup, 1857 en el Atlántico Centro Oriental. Tesis doctoral, Universidad de Las Palmas de Gran Canaria, Spain.Google Scholar
Hixon, R.F., Hanlon, R.T. & Hulet, W.H., 1981. Growth and maximal size of the long-finned squid Loligo pealei in the northwestern Gulf of Mexico. Journal of Shellfish Research, 1, 182185.Google Scholar
Mangold, K., 1987. Reproduction. In Cephalopod life cycles, vol. 2 (ed. P.R., Boyle), pp. 135156. London: Academic Press.Google Scholar
Martín-Andrés, A. & Luna del Castillo, J.D., 1990. Bioestadística para las ciencias de la salud. Madrid: Ediciones Norma S.A.Google Scholar
Mittelstaedt, E., 1991. The ocean boundary along the northwest African coast: circulation and oceanographic properties at the sea surface. Progress in Oceanography, 26, 307355.Google Scholar
Müller, J.T. & Siedler, G., 1992. Multi-year current time series in the eastern North Atlantic Ocean. Journal of Marine Research, 50, 6298.Google Scholar
Ragonese, S. & Jereb, P., 1990. Length-weight relationships of Illex coindetii Verany, 1839 (Mollusca: Cephalopoda) in the Sicilian channel. N.T.R. Istituto di Tecnologia della Pesca e del Pescato, 21, 118.Google Scholar
Reynolds, W.W. & Casterlin, M.E., 1980. Role of temperature in the environmental physiology of fishes. In Environmental physiology of fishes (ed. M.A., Ali), pp. 497518. New York: Plenum Press.CrossRefGoogle Scholar
Ricker, W.E., 1973. Linear regressions in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409434.Google Scholar
Ricker, W.E., 1979. Growth rates and models. In Fish physiology, vol. 8 (ed. W.S., Hoar et al.), pp. 677743. New York: Academic Press.Google Scholar
Rodríguez-Roda, J., 1983. La función alométrica aplicada al crecimiento diferencial en el atún, Thunnus thynus (L.). Estudio de las poblaciones de atunes de ambas orillas del Atlántico Norte y del Mediterráneo. Investigación Pesquera, 47, 171202.Google Scholar
Roper, C.F. & Sweeney, M.J., 1981. Ommastrephidae. In FAO Species identification sheets for fishery purposes. Eastern Central Atlantic; Fishing areas 34, 47 (in part), vol. VI (ed. W., Fischer et al.), pp 118. Canada Funds-in-Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations.Google Scholar
Roper, C.F.E. & Voss, G.L., 1983. Guidelines for taxonomic descriptions of cephalopod species. Memoirs of the National Museum Victoria, 44, 4863.Google Scholar
Sánchez, P., 1981. Características bioecológicas de Illex coindetii (Vérany, 1837) en el mar Catalán. Tesis doctoral. Universidad de Barcelona, Spain.Google Scholar
Van Heukelem, W.F., 1979. Environmental control of reproduction and life span in Octopus: an hypothesis. In Reproductive ecology of marine invertebrates (ed. S.E., Stancyk), pp. 123133. Columbia: University of South Carolina Press. [The Belle W. Baruch Library in Marine Science, no. 9.]Google Scholar
Wauthy, B., 1983. Introduction à la climatologie du Golfe de Guinée. Océanographie Tropicale, 18, 103138.Google Scholar
Zolotnitskij, A.P. & Monin, V.L., 1990. Individual fecundity and generative production in the mussel Mytilus galloprovincialis from the Black Sea. Biologia Morya, 6, 2430. [In Russian.]Google Scholar
Zuev, G.V. & Nesis, K.N., 1971. Squids (biology and fisheries). Moscow: Pishcherya Promyshlenost.Google Scholar