Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-03T17:16:14.728Z Has data issue: false hasContentIssue false

A model of the relationship between light and primary production in an atoll lagoon

Published online by Cambridge University Press:  11 May 2009

Loïc Charpy
Affiliation:
ORSTOM, Centre d'Océanologie de Marseille, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
Claude Julia Roubaud-Charpy
Affiliation:
ORSTOM, Centre d'Océanologie de Marseille, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France

Abstract

The Tikehau atoll (Tuamoru Archipelago, French Polynesia) is located at 14°S 148°W. Phytoplankton and sand microalgae are the most important primary producers of the lagoon. They were studied for 4 years.

The relationship between light energy and lagoonal primary production was measured by using the 14C method for phytoplankton and O2 method for phytobenthos. Incubations, carried out in situ, were made at different depths and light exposition times.

Irradiance was high and 17% of the light energy measured at the surface reached 25 m (lagoon average depth). Maxima of phytoplankton and phytobenthos productions occurred at low depths; there was therefore no photoinhibition of photosynthesis. Correlations between light energy and primary production were strong, especially for phytobenthos. Multiplicative linear regression models (production vs light) associated with an exponential linear regression model (light vs depth), allowed planktonic and benthic primary production to be predicted from the depth and the light energy received at the surface. The benthic primary production exceeded the phytoplanktonic production in the upper 18 m. The total primary production (benthos + plankton) was constant with depth and depended only on light energy at the surface. One Einstein received at the lagoon surface allowed the growth production of 14 mg of carbon (water column + sediments).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchot, J., Charpy, L. & Le Borgne, R., 1989. Size composition of particulate organic matter in the lagoon of Tikehau atoll (Tuamotu Archipelago). Marine Biology, 102, 329339.CrossRefGoogle Scholar
Charpy-Roubaud, C.J., 1986 a. Le microphytobenthos. I. Biomasse (premiers résultats). Notes et Documents. ORSTOM Tahiti (séer. Océanographie), 28, 151.Google Scholar
Charpy-Roubaud, C.J., 1986 b. Le microphytobenthos. II. Production primaire (premiers résultats). Notes et Documents. ORSTOM Tahiti (sér. Océanographie), 28, 5281.Google Scholar
Charpy-Roubaud, C.J., 1988. Production primaire des fonds meubles du lagon de Tikehau (Atoll des Tuamotu, Polynésie Françhise). Oceanologica Acta, 11, 241248.Google Scholar
Charpy-Roubaud, C.J. & Charpy, L. 1990. Bilans de 1'azote et du phosphore dans un atoll ouvert du Pacifique Central (Tikehau, Tuamotu, Polynésie Françhise). Compte Rendu Hebdomadaire des Séances de l'Académie des Sciences (sér. III), 310 (5), 163167.Google Scholar
Charpy-Roubaud, C.J. & Sournia, A., 1990. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Marine Food Web, in press.Google Scholar
Delesalle, B., 1985. Environmental survey of Mataiva Atoll, Tuamotu Archipelago French Polynesia. Atoll Research Bulletin, no. 286, 41 pp.Google Scholar
De Visscher, P. 1983. On PQ values. Hydrobiological Bulletin, 17 (1), 2951.Google Scholar
Intes, A. & Arnaudin, H., 1987. Esquisse sédimentologique du lagon de Tikehau. Notes et Documents. ORSTOM Tahiti (sér. Océanographie), 35, 71100.Google Scholar
Jassby, A.D. & Platt, T., 1976. Mathematical formulation of the relationship between photosyn-thesis and light for phytoplankton. Limnology and Oceanography, 21, 540547.Google Scholar
Joint, I.R., 1990. Does the response of picoplankton to light differ from that of other phytoplankton? In Light and Life in the Sea. (ed. M., Whitfieldet al.), pp. 105114. Cambridge: Cambridge University Press.Google Scholar
Joint, I.R. & Pomeroy, A.J., 1986. Photosynthetic characteristics of nanoplankton and picoplankton from the surface mixed layer. Marine Biology, 92, 465474.Google Scholar
Larkum, A.W.D., 1983. The primary productivity of plant communities on coral reefs. In Perspectives on Coral Reefs (ed. D.J., Barnes), pp. 221230. [Australian Institute of Marine Science Contribution, 200.]Google Scholar
Le Borgne, R.P., Blanchot, J. & Charpy, L., 1989. Zooplankton of Tikehau atoll (Tuamotu Archipelago) and its relationship to particulate matter. Marine Biology, 102, 341353.CrossRefGoogle Scholar
Legendre, L., Demers, S., Yentsch, C.M. &, 1983. The 14C method: patterns of dark CO2 fixation and DCMU correction to replace the dark bottle. Limnology and Oceanography, 28, 9961003.CrossRefGoogle Scholar
Legendre, L., Demers, S., Delesalle, B. & Harnois, C., 1988. Biomass and photosynthetic activity of phototropic picoplankton in coral reef waters (Moorea Island, French Polynesia). Marine Ecology - Progress Series, 47, 153160.Google Scholar
Lenhardt, X., 1987. Etude bathymetrique du lagon de l'atoll de Tikehau. Notes et Documents. ORSTOM Tahiti (sér. Océanographie), 35, 5370.Google Scholar
McCloskey, L.R., Wethey, D.S. & Porter, J.W., 1978. Measurement and interpretation of photo-synthesis and respiration. Monographs on Oceanographie Methodology, 5, 379396.Google Scholar
Morris, I.C., Yentsch, C.M. & Yentsch, C.S., 1971. Relationship between light CO2 fixation by marine algae. Limnology and Oceanography, 16, 854858.Google Scholar
Plante-Cuny, M.-R., 1984. Le microphytobenthos et son rôle à 1'échelon primaire dans le milieu marin. Oceanis, 10, 417427.Google Scholar
Platt, T. & Jassby, A.D., 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. Journal of Phycology, 12, 421430.CrossRefGoogle Scholar
Raven, J.A., Smith, F.A. & Glidewell, S.M., 1979. Photosynthetic capacities and biological strategies of giant-celled and small-celled macro-algae. New Phytologist, 83, 299309.Google Scholar
Sournia, A., 1976. Primary production of the lagoon of an atoll and the role of foraminiferan symbionts. Marine Biology, 37, 2932.CrossRefGoogle Scholar
Sournia, A. & Ricard, M., 1976. Données sur 1'hydrologie et la productivité du lagon d'un atoll fermé (Takapoto, lies Tuamotu). Vie et Milieu, 26, 243279.Google Scholar
Steemann, Nielsen E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. Journal du Conseil, 18, 117140.Google Scholar
Yentsch, C.S. and Menzel, D.W., 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research, 10, 221231.Google Scholar