Skip to main content Accessibility help
×
Home

Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island

  • Jullie M. Sarmiento-Ramirez (a1), Jolene Sim (a2), Pieter Van West (a3) and Javier Dieguez-Uribeondo (a1)

Abstract

Fungal emerging pathogens are one of the main threats for global biodiversity. Sea turtles do not seem to be an exemption, and recent studies on important nesting areas worldwide have shown that two fungal pathogens, i.e. Fusarium falciforme and Fusarium keratoplasticum, are involved in low hatching success in nests of sea turtle species. Although the presence of these pathogens has been detected in Ascension Island, there are no investigations on the distribution of these two pathogens in main nesting beaches in the island. In this study, we analysed 109 eggshells of the species Chelonia mydas from four nesting areas in Ascension Island. We have isolated and identified a total of 46 fungal isolates. A phylogenetic analysis, of the ITS nrDNA region, with a number of reference sequences of the Fusarium solani species complex, showed that 23 of these isolates corresponded to the pathogen F. keratoplasticum. The analyses on isolation frequency, that included other previously obtained isolates, i.e. 11 F. keratoplasticum and one F. falciforme, showed that F. keratoplasticum was the species most frequently isolated in Ascension Island and it was found in all nesting beaches, while F. falciforme was only isolated from Pan Am beach. When compared with other nesting areas worldwide, the abundance of F. keratoplasticum over F. falciforme was higher than any other nesting region tested. These findings are important in order to evaluate the potential threat of this pathogen to nests of the sea turtle population of Ascension Island, and to develop future control strategies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island
      Available formats
      ×

Copyright

Corresponding author

Correspondence should be addressed to: J. Dieguez-Uribeondo, Departamento de Micología, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014, Madrid, Spain email: dieguez@rjb.csic.es

References

Hide All
Altizer, S., Harvell, D. and Friedle, E. (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution 18, 589596.
Barrero-Canosa, J., Dueñas, L.F. and Sanchez, J.A. (2013) Isolation of potential fungal pathogens in gorgonian corals at the Tropical Eastern Pacific. Coral Reefs 32, 3541.
Broderick, A.C., Frauenstein, R., Glen, F., Hays, G.C., Jackson, A.L., Pelembe, T., Ruxton, G.D. and Godley, D.J. (2006) Are green turtles globally endangered? Global Ecology and Biogeography 15, 2126.
Daszak, P., Berger, L., Cunningham, A.A., Hyatt, A.D., Green, D.E. and Speare, R. (1999) Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5, 735748.
Daszak, P., Cunningham, A.A. and Hyatt, A.D. (2000) Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287, 443449.
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.
Guarro, J., Gams, W., Pujol, I. and Gene, J. (1997) Acremonium species: new emerging fungal opportunists in vitro antifungal susceptibilities and review. Clinical Infectious Diseases 25, 12221229.
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. and Samuel, M.D. (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296, 21582162.
Harvell, D., Altizer, S., Cattadori, I.M., Harrington, L. and Weil, E. (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90, 912920.
Garcia-Solache, M.A. and Casadevall, A. (2010) Global warming will bring new fungal diseases for mammals. mBio 1, 13.
Lau, Y.L., Yuen, K.Y., Lee, C.W. and Chan, C.F. (1995) Invasive Acremonium falciforme infection in a patient with severe combined immunodeficiency. Clinical Infectious Diseases 20, 197198.
Lutzoni, F., Kauff, F., Cymon, J.C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T.Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, T., O'Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R.C., Hosaka, K., Young-Woon, L., Randon, M., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. and Vilgalys, R. (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91, 14461480.
Martin, M.P. and Winka, K. (2000) Alternative methods of extracting and amplifying DNA from lichens. Lichenologist 32, 189196.
Mehl, H.L. and Epstein, L. (2008) Sewage and community shower drains are environmental reservoirs of Fusarium solani species complex group 1, a human and plant pathogen. Environmental Microbiology 1, 219227.
Miro, O., Ferrando, J., Lecha, V. and Campistol, J.M. (1994) Abscesos subcutaneos por Acremonium falciforme en un trasplantado renal. Medicina Clinica (Barcelona) 102, 316.
Noble, R.C., Salgado, J., Newell, S.W. and Goodman, N.L. (1997) Endophthalmitis and lumbar diskitis due to Acremonium falciforme in a splenectomized patient. Clinical Infectious Diseases 24, 277278.
Page, R.D.M. (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.
Rambaut, A. (2002) Se-Al sequence alignment editor. Oxford: University of Oxford. Available: http://tree.bio.ed.ac.uk/software/seal/.
Sarmiento-Ramírez, J.M., Abella, E., Martín, M.P., Tellería, M.T., López-Jurado, L.F., Marco, A. and Diéguez-Uribeondo, J. (2010) Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiology Letters 312, 192200.
Sarmiento-Ramírez, J.M., Abella, E., Phillott, A.D., Sim, J., Martín, M.P., Marco, A. and Diéguez-Uribeondo, J. (2014a) Global distribution of two fungal pathogens threatening endangered sea turtles. PLoS ONE 9, e85853.
Sarmieto-Ramírez, J.M., van der Voort, M., Raaijmakers, J.M. and Dieguez-Uribeondo, J. (2014b) Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme . PLoS ONE 9, e95206.
Short, D.P.G., O'Donnell, K., Thrane, U., Nielsen, K.F., Zhang, N., Juba, J.H. and Geiser, D.M. (2013) Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genetics and Biology 53, 5970.
Short, D.P.G., O'Donnell, K., Zhang, N., Juba, J.H. and Geiser, D.M. (2011) Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. Journal of Clinical Microbiology 49, 42644272.
Summerbell, R.C. and Schroers, H.J. (2002) Analysis of phylogenetic relationship of Cylindrocarpon lichenicola and Acremonium falciforme to the Fusarium solani species complex and a review of similarities in the spectrum of opportunistic infections caused by these fungi. Journal of Clinical Microbiology 40, 28662875.
Swofford, D.L. (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Sinauer Associates.
Van Etta, L. L., Peterson, L. R. and Gerding, D. N. (1983) Acremonium falciforme (Cephalosporium falciforme) mycetoma in a renal transplant patient. Archives of Dermatology 119, 707708.
Weber, S.B., Weber, N., Ellick, J., Avery, A., Frauenstein, R., Godley, B.J., Sim, J., Williams, N. and Broderick, A.C. (2014) Recovery of the South Atlantic's largest green turtle nesting population. Biodiversity and Conservation 23, 3005–3018. doi: 10.1007/s10531-014-0759-6.
White, T.J., Bruns, T., Lee, S. and Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds) PCR protocols: a guide to methods and applications. Orlando, FL: Academic Press, pp. 315322.
Zhang, N., O'Donnell, K., Deanna, A.S., Ameena, F.N., Summerbell, R.C., Arvind, A.P. and Geiser, D.M. (2006) Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. Journal of Clinical Microbiology 44, 21862190.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed