Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T05:10:39.563Z Has data issue: false hasContentIssue false

Intertidal meiofauna communities along an estuarine gradient in a protected area (Ria de Foz, north-west Spain)

Published online by Cambridge University Press:  06 October 2011

M. Rubal*
Affiliation:
Departamento de Zooloxía e Antropoloxía Física, Universidade de Santiago de Compostela, Facultade de Veterinaria, Avenida Carballo Calero s/n, 27002, Lugo, Spain CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Laboratório de Biodiversidade Costeira, Rua dos Bragas, 289, 4050-123 Porto, Portugal
C. Besteiro
Affiliation:
Departamento de Zooloxía e Antropoloxía Física, Universidade de Santiago de Compostela, Facultade de Veterinaria, Avenida Carballo Calero s/n, 27002, Lugo, Spain Estación de Bioloxía Mariña da Graña (EBMG), Casa do Hórreo, Rúa da Ribeira, 1. 15590 A Graña, Ferrol, Spain
P. Veiga
Affiliation:
Departamento de Zooloxía e Antropoloxía Física, Universidade de Santiago de Compostela, Facultade de Veterinaria, Avenida Carballo Calero s/n, 27002, Lugo, Spain CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Laboratório de Biodiversidade Costeira, Rua dos Bragas, 289, 4050-123 Porto, Portugal
*
Correspondence should be addressed to: M. Rubal, CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Laboratório de Biodiversidade Costeira Rua dos Bragas, 289, 4050-123 Porto, Portugal email: mrubal@ciimar.up.pt

Abstract

The northern Galician rias provide important economic and social services from fisheries, shellfish harvesting and recreational activities. Consequently, these rias have been included in the Nature 2000 Network as a Special Conservation Zone. The aims of this study were to describe the meiofauna spatial structure in terms of diversity and abundance of major taxa, as well as its relationship with the environmental characteristics in the Ria de Foz nature reserve. For this aim, environmental gradients and distribution patterns of intertidal meiobenthic communities at the Ria de Foz nature reserve were studied using multivariate methods. Ria de Foz showed to be a complex transitional habitat with significant changes in its environment along the estuarine gradient. An abundant and rich meiofauna community was reported at Ria de Foz. A total of 21 higher taxa of meiofauna were found. The most common taxa were nematodes, copepods, ostracods and turbellarians. Three clear different meiobenthic communities were defined. These three communities showed a clear spatial distribution pattern along the estuarine gradient. Moreover, a high degree of similarity between distribution patterns of meiobenthic communities and previously studied macrobenthic communities was found. Regarding the role of environmental factors shaping meiobenthic community distribution patterns distance to the river mouth was the environmental variable that best explained meiobenthic community structure and distribution. Therefore, changes on hydrodynamics that affect environmental factors related to the estuarine gradient will change the distribution pattern and diversity of benthic communities. This work provides the first information about meiobenthos diversity and structure in the Ria de Foz nature reserve and should be useful for future management and conservation plans on this and other similar protected areas.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adão, H., Alves, A.S., Patricio, J., Neto, J.M., Costa, M.J. and Marques, J.C. (2009) Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European estuaries. Acta Oecologica 35, 287300.Google Scholar
Alves, A.S., Adão, H., Patricio, J., Neto, J.M., Costa, M.J. and Marques, J.C. (2009) Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). Journal of the Marine Biological Association of the United Kingdom 89, 15291540.Google Scholar
Anderson, M.J. (2003) PCO: a FORTRAN computer program for principal coordinate analysis. New Zealand: Department of Statistics, University of Auckland.Google Scholar
Athersuch, J., Horne, D.J. and Whittaker, J.E. (1989) Marine and brackish water ostracods. In Kermack, D.M. and Barnes, R.S.K. (eds) Synopses of the British fauna: New Series, Number 43, 359 pp.Google Scholar
Austen, M.C. (1989) Factors affecting estuarine meiobenthic assemblage structure: a multifactorial microcosm experiment. Journal of Experimental Marine Biology and Ecology 130, 167187.CrossRefGoogle Scholar
Bachelet, G., Montaudouin, X. and Dauvin, J.C. (1996) The quantitative distribution of subtidal macrozoobenthic assemblages in Arcachon Bay in relation to environmental factors: a multivariate analysis. Estuarine, Coastal and Shelf Science 42, 371391.Google Scholar
Buchanan, J.B. (1984) Sediment analysis. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell, pp. 4165.Google Scholar
Castellanos, C., Hernández-Vega, S. and Junoy, J. (2003) Cambios bentónicos en la ría de Foz (Lugo) (noroeste de España) tras la construcción de un espigón. Boletín del Instituto Español de Oceanografía 19, 205217.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–43.Google Scholar
Clarke, K.R. and Ainsworth, M. (1993) A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92, 205219.CrossRefGoogle Scholar
Coull, B.C. (1999) Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology 24, 327343.CrossRefGoogle Scholar
Currás, A. and Mora, J. (1991) Comunidades bentónicas de la ría del Eo (Galicia-Asturias, NW España). Cahiers de Biologie Marine 32, 5781.Google Scholar
de Paz, L., Patrício, J., Marques, J.C., Borja, A. and Laborda, A.J. (2008) Ecological status assessment in the lower Eo estuary (Spain). The challenge of habitat heterogeneity integration: a benthic perspective. Marine Pollution Bulletin 56, 12751283.Google Scholar
Duck, R.W., McManus, J. and Diez, J.J. (1995) Comparative study of two largely infilled estuaries: the Eden Estuary (Scotland) and the Ria de Foz (Spain). Netherlands Journal of Aquatic Ecology 29, 203210.Google Scholar
Eleftheriou, A. and Nicholson, M.D. (1975) The effect of exposure on beach fauna. Cahiers de Biologie Marine 16, 695710.Google Scholar
Elliott, M. and McLusky, D.S. (2002) The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science 55, 815827.Google Scholar
Heip, C.H., Vincx, M. and Vranken, G. (1985) The ecology of marine Nematoda. Oceanography and Marine Biology: an Annual Review 23, 399489.Google Scholar
Hernández-Vega, S., Castellanos, C. and Junoy, J. (2005) Cartography of the surface sediments of the Ría de Foz (Lugo, Northwest Spain) after the construction of a jetty. Thalassas 21, 8392.Google Scholar
Hicks, G.F.R. and Coull, B.C. (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology: an Annual Review 21, 67175.Google Scholar
Junoy, J. (1996) La ría de Foz, Comunidades bentónicas. Lugo: Servicio de Publicaciones de la Diputación Provincial de Lugo.Google Scholar
Junoy, J. and Viéitez, J.M. (1989) Cartografía de los sedimentos superficiales de la Ría de Foz (Lugo). Thalassas 7, 919.Google Scholar
Junoy, J. and Viéitez, J.M. (1990) Macrozoobenthic community structure in the Ría de Foz, an intertidal estuary (Galicia, Northwest Spain). Marine Biology 107, 329339.Google Scholar
Junoy, J. and Viéitez, J.M. (1992) Macrofaunal abundance analyses in the Ría de Foz (Lugo, Northwest Spain). Cahiers de Biologie Marine 33, 331345.Google Scholar
Levin, L.A., Boesch, D.F., Covich, A., Dahm, C., Erséus, C., Ewel, K.C., Kneib, R.T., Moldenke, A., Palmer, M.A., Snelgrove, P., Strayer, D. and Weslawski, J.M. (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430451.Google Scholar
Little, C. (2000) The biology of soft shores and estuaries. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lopez, G.R., Levinton, J.S. and Slobodkin, L.G. (1977) The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia 30, 111127.Google Scholar
Mazé, R.A. and Laborda, A.J. (1990) Cambios estacionales de una población de Donax trunculus (Linnaeus, 1758) (Pelecypoda: Donacidae) en la ría de El Barquero (Lugo, NO. De España). Scientia Marina 54, 131138.Google Scholar
Mazé, R.A., Laborda, A.J. and Luis, E. (1990) Macrofauna intermareal de sustrato arenoso en la Ría de el Barquero (Lugo, NO. España): II–estructura de la comunidad. Zonación. Cahiers de Biologie Marine 31, 4764.Google Scholar
McCall, J. (1992) Source of harpacticoid copepods in the diet of juvenile starry flounder. Marine Ecology Progress Series 84, 4150.Google Scholar
McCall, J. and Fleeger, J. (1995) Predation by juvenile fish on meiofauna: a review with data on post-larval Leiostomus xanthurus. Vie et Milieu 45, 6173.Google Scholar
McLachlan, A. (1980). The definition of sandy beaches in relation to exposure: a simple rating system. South African Journal of Science 76, 137138.Google Scholar
Montagna, P.A. and Kalke, R.D. (1992) The effect of freshwater inflow on meiofaunal and macrofaunal populations in the Guadalupe and Nueces Estuaries, Texas. Estuaries 15, 307326.Google Scholar
Pfannkuche, O. and Thiel, H. (1988) Sample processing. In Higgins, R.P. and Thiel, H. (eds) Introduction to the study of meiofauna. Washington, DC: Smithsonian Institution Press, pp. 134145.Google Scholar
Riera, P. and Hubas, C. (2003) Trophic ecology of nematodes from various microhabitats of the Roscoff Aber Bay (France): importance of stranded macroalgae evidenced through δ13 C and δ15 N. Marine Ecology Progress Series 260, 151159.Google Scholar
Riera, P., Richard, P., Grémare, A. and Blanchard, G. (1996) Food source of intertidal nematodes in the Bay of Marennes-Oléron (France), as determined by dual stable isotope analysis. Marine Ecology Progress Series 142, 303309.CrossRefGoogle Scholar
Robertson, A.I. (1986) Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forest (Rhizophora spp.) in northeastern Australia. Journal of Experimental Marine Biology and Ecology 102, 237248.CrossRefGoogle Scholar
Ruiz, F., González-Regalado, M.L., Borrego, J. and Pendón, J.G. (2004) Ostracoda and foraminifera as short-term tracers of environmental changes in very polluted areas: the Odial estuary (SW Spain). Environmental Pollution 129, 4961.Google Scholar
Smol, N., Willems, K.A., Govaere, J.C.R. and Sandee, A.J.J. (1994) Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282/283, 197217.Google Scholar
Soetaert, K., Vincx, M., Wittoeck, J., Tulkens, M. and van Gansbeke, D. (1994) Spatial patterns of Westerschelde meiobenthos. Estuarine, Coastal and Shelf Science 39, 367388.Google Scholar
Soetaert, K., Vincx, M., Wittoeck, J. and Tulkens, M. (1995) Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311, 185206.Google Scholar
Underwood, G.J.C. and Krompkamp, J. (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29, 3153.Google Scholar
Yamamuro, M. (2000) Abundance and size distribution of sublittoral meiobenthos along estuarine salinity gradients. Journal of Marine Systems 26, 135143.Google Scholar