Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T09:03:42.568Z Has data issue: false hasContentIssue false

Interrelationships of Cholesterol and Hydrocarbon Metabolism in the Shore Crab, Carcinus

Published online by Cambridge University Press:  11 May 2009

S. C. M. O'Hara
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
A. C. Neal
Affiliation:
Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS
E. D. S. Corner
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
A. L. Pulsford
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

In marine crustaceans the polynuclear aromatic hydrocarbon benzo[a]pyrene undergoes changes mediated by benzo[a]pyrene mono-oxygenase (BPM), a cytochrome P-450 dependent enzyme system requiring molecular oxygen and NADPH as a cofactor: it has now been detected in several species (see O'Hara et al. 1982).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, G. A. S. & Smith, Leland L., 1979. High-performance liquid chromatography of cholesterol autoxidation products. Journal of Chromatography, 176, 307315.Google Scholar
Assmann, G., Fredrickson, D. S., Sloan, H. R., Fales, H. M. & Highet, R. J., 1975. Accumulation of oxygenated steryl esters in Wolman's disease. Journal of Lipid Research, 16, 2838.CrossRefGoogle ScholarPubMed
Atkin, S. D., Palmer, E. D., English, P. D., Morgan, B., Cawthorne, M. A. & Green, J., 1972. The role of cytochrome P-450 in cholesterol biogenesis and catabolism. Biochemical Journal, 128, 237242.CrossRefGoogle ScholarPubMed
Björkhem, I., Einarrson, K. & Johansson, G., 1968. Formation and metabolism of 3β/-hydroxycholest-5-en-7-one and cholest-5-ene-3β/,7β/-diol. Acta chemica scandinavica, 22, 15951605.CrossRefGoogle Scholar
Bollenbacher, W. E., Galbraith, M. N., Gilbert, L. I. & Horn, D. H. S., 1977. In vitro metabolism of 3-hydroxy-, and 3β/, 14βα-dihydroxy-[3α-3H]-5β/-cholest-7-en-6-one by the prothoracic glands of Manduca sexta. Steroids, 29, 4763.CrossRefGoogle Scholar
Brooks, C. J. W., Henderson, W. & Steel, G., 1973. The use of trimethylsilyl ethers in the characterization of natural sterols and steroid diols by gas chromatography – mass spectrometry. Biochimica et biophysica acta, 296, 431445.CrossRefGoogle ScholarPubMed
Brooks, C. J. W., Horning, E. C. & Young, J. S., 1968. Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids, 3, 391402.CrossRefGoogle ScholarPubMed
Charniaux-Cotton, H., 1960. Sex determination. In The Physiology of Crustacea, vol. 1 Metabolism and Growth (ed. Waterman, T. H.), pp. 411447. New York: Academic Press.Google Scholar
Cheng, K-P., Nagano, H., Bang, L. & Ourisson, G., 1977. Chemistry and biochemistry of Chinese drugs. Part I. Sterol derivatives cytotoxic to haptonema cells, isolated from the drug Bombyx cum Botryte. Journal of Chemical Research, 217, 217.Google Scholar
Danielsson, H. & Sjövaix, J., 1975. Bile acid metabolism. Annual Review of Biochemistry, 44, 233253.CrossRefGoogle ScholarPubMed
Elmamlouk, T. H., Gessner, T. & Brownie, A. C., 1974. Occurrence of cytochrome P-450 in hepatopancreas of Homarus americanus. Comparative Biochemistry and Physiology, 48B, 419425.Google Scholar
Estabrook, R. W. & Werringloer, J., 1978. The measurement of difference spectra: application to the cytochromes of microsomes. In Methods in Enzymology, vol. LII. Biomembranes: Part C: Biological Oxidations: Microsomal, Cytochrome P-450, and Other Hemoprotein Systems (ed. Fleischer, S. and Packer, L.), pp. 212—220. New York: Academic Press.Google Scholar
Fewster, M. E., Burns, B. J. & Mead, J. F., 1969. Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. Journal of Chromatography, 43, 120126.Google Scholar
Feyereisen, R. & Durst, F., 1978. Ecdysterone biosynthesis: a microsomal cytochrome-P-450-linked ecdysone 20-mono-oxygenase from tissues of the African migratory locust. European Journal of Biochemistry, 88, 3747.CrossRefGoogle Scholar
Gagosian, R. B., Bourbonniere, R. A., Smith, W. B., Couch, E. F., Blanton, C. & Novak, W., 1974. Lobster moulting hormones: isolation and biosynthesis of ecdysterone. Experientia, 30, 723724.CrossRefGoogle ScholarPubMed
Goad, L. J., 1976. The steroids of marine algae and invertebrate animals. In Biochemical and Biophysical Perspectives in Marine Biology, vol. 3 (ed. Malins, D. C. and Sargent, J. R.), pp. 213—318. London: Academic Press.Google Scholar
Gower, D. B., 1975. Properties and subcellular location of enzymes involved in steroidogenesis (and the role of cytochrome P-450). In Biochemistry of Steroid Hormones (ed. Makin, H. L. J.), pp. 105125. Oxford: Blackwell Scientific Publications.Google Scholar
Harptree, E. F., 1972. Determination of protein: a modification of the Lowry method that gives a photometric response. Analytical Biochemistry, 48, 422427.Google Scholar
Hrycay, E. G. & O'Brien, P. J., 1971. Cytochrome P-450 as a microsomal peroxidase in steroid hydroxylations. Biochemical Journal, 125, 12 P.Google Scholar
James, M. O., Khan, M. A. Q. & Bend, J. R., 1979. Hepatic microsomal mixed-function oxidase activities in several marine species common to coastal Florida. Comparative Biochemistry and Physiology, 63C, 155164.Google Scholar
Johnson, P. & Rees, H. H., 1977. Biosynthesis of ecdysones: metabolism of 7-dehydrocholesterol in Schistocerca gregaria. Journal of Insect Physiology, 23, 13871392.CrossRefGoogle Scholar
Juchau, M. R., Lee, Q. H. & Blake, P. H., 1972. Inverse correlation between aryl hydrocarbon hydroxylase and conversion of cholesterol to pregnenolone in human placentas at term. Life Sciences, 11, 949956.Google ScholarPubMed
Kinnear, J. F., Martin, M-D., Chong, U. K., Faux, A., Horn, D. S. & Wilkie, J. S., 1978. Insect moulting hormones: possible intermediates in the metabolism of cholesterol to ecdysteroids in an insect. Australian Journal of Chemistry, 31, 20692075.CrossRefGoogle Scholar
Kowal, J., Simpson, E. R. & Estabrook, R. W., 1970. Adrenal cells in tissue culture. V. On the specificity of the stimulation of 11β-hydroxylation by adrenocorticotropin. Journal of Biological Chemistry, 245, 2438—2443.CrossRefGoogle ScholarPubMed
Lachaise, F., Goudeau, M., Hetru, C., Kappler, C. & Hoffmann, J. A., 1981. Ecdysteroids and ovarian development in the shore crab Carcinus maenas. Hoppe-Seyler's Zeitschrift für physiologische Chemie, 362, 524529.CrossRefGoogle ScholarPubMed
Lee, R. F., 1981. Mixed function oxygenases (MFO) in marine invertebrates. Marine Biology Letters, 2, 87105.Google Scholar
Lee, R. F., Singer, S. C. & Page, D. S., 1981. Responses of cytochrome P-450 systems in marine crabs and polychaetes to organic pollutants. Aquatic Toxicology, 1, 355356.CrossRefGoogle Scholar
Marshall, O. & Kates, M., 1972. Biosynthesis of phosphatidylglycerol by cell-free preparations from spinach leaves. Biochimica et biophysica acta, 260, 558570.CrossRefGoogle ScholarPubMed
Mendelsohn, D., Mendelsohn, L. & Staple, E., 1965. The catabolism in vitro of cholesterol: formation of the 7-epimeric hydroxycholesterols from cholesterol in rat liver. Biochimica et biophysica acta, 97, 379381.Google Scholar
Mitropoulos, K. A. & Balasubramaniam, S., 1972. Cholesterol 7α-hydroxylase in rat liver microsomal preparations. Biochemical Journal, 128, 19.Google Scholar
Mitton, J. R., Scholan, N. A. & Boyd, G. S., 1971. The oxidation of cholesterol in rat liver sub-cellular particles. The cholesterol-7α-hydroxylase enzyme system. European Journal of Biochemistry, 20, 569579.CrossRefGoogle Scholar
Norii, T., Yamaga, N. & Yamasaki, K., 1970. Metabolism of 7β-hydroxycholesterol-4-14C in rat. Steroids, 15, 303325.CrossRefGoogle ScholarPubMed
O'Hara, S. C. M., Corner, E. D. S., Forsberg, T. E. V. & Moore, M. N., 1982. Studies on benzo[a]pyrene mono-oxygenase in the shore crab Carcinus maenas. Journal of the Marine Biological Association of the United Kingdom, 62, 339357.CrossRefGoogle Scholar
Omura, T. & Sato, R., 1964. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. Journal of Biological Chemistry, 239, 23792385.Google Scholar
Oord, A. van den, Danielsson, H. & Ryhage, R., 1965. On the structure of the emulsifiers in gastric juice from the crab, Cancer pagurus L. Journal of Biological Chemistry, 240, 22422247.Google Scholar
Parke, D. V., 1981. The endoplasmic reticulum: its role in physiological functions and pathological situations. In Concepts in Drug Metabolism, part b (ed. Jenner, P. and Testa, B.), pp. 152. New York: Marcel Dekker, Inc.Google Scholar
Robbins, W. E., Thompson, M. J., Kaplanis, J. N. & Shortino, T. J., 1964. Conversion of cholesterol to 7-dehydrocholesterol in aseptically reared German cockroaches. Steroids, 4, 635644.Google Scholar
Samuelsson, B., 1960. Bile acids and steroids. 96. On the mechanism of the biological formation of deoxycholic acid from cholic acid. Journal of Biological Chemistry, 235, 361366.Google Scholar
Singer, S. C. & Lee, R. F., 1977. Mixed function oxygenase activity in the crab, Callinectes sapidus: tissue distribution and correlation with changes during molting and development. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 153, 377386.Google Scholar
Spaziani, E. & Kater, S. B., 1973. Uptake and turnover of cholesterol-14C in Y-organs of the crab Hemigrapsus as a function of the molt cycle. General and Comparative Endocrinology, 20, 534549.Google Scholar
Topham, R. W. & Gaylor, J. L., 1970. Isolation and purification of a 5α-hydroxysterol dehydrase of yeast. Journal of Biological Chemistry, 245, 23192327.CrossRefGoogle ScholarPubMed
Uemura, T. & Chiesara, C., 1976. NADH-dependent aryl hydrocarbon hydroxylase in rat liver mitochondrial outer membrane. European Journal of Biochemistry, 66, 293307.Google Scholar
van Lier, J. E., Kan, G., Langlois, R. & Smith, Leland L., 1972. On the role of sterol hydroperoxides in steroid metabolism. Biochemical Society Symposia, no. 34, 2143.Google Scholar
Vonk, H. J., 1960. Digestion and metabolism. In The Physiology of Crustacea, vol. I. Metabolism and Growth (ed. Waterman, T. H.), pp. 291316. New York: Academic Press.Google Scholar
Vonk, H. J., 1962. Emulgators in the digestive fluids of invertebrates. Archives internationales de physiologie et de biochimie, 70, 6785.Google Scholar
Wills, E. D., 1969 a. Lipid peroxide formation in microsomes. The role of non-haem iron. Biochemical Journal, 113, 325332.CrossRefGoogle ScholarPubMed
Wills, E. D., 1969 b. Lipid peroxide formation in microsomes. Relationship of hydroxylation to lipid peroxide formation. Biochemical Journal, 113, 333—341.Google Scholar
Wintersteiner, O. & Ritzmann, J. R., 1940. The isolation of 7β-hydroxycholesterol from the serum of pregnant mares. Journal of Biological Chemistry, 136, 697708.CrossRefGoogle Scholar
Yamasaki, K., Usui, T., Tsutoshi, I., Nakasone, S., Hozumi, M. & Takatsuki, S-I., 1965. Absence of bile acids in the digestive juice of the swamp crayfish (Procanbarus clarkii). Nature, London, 205, 13261327.CrossRefGoogle Scholar