Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T19:03:37.433Z Has data issue: false hasContentIssue false

Influence of environmental factors on biodiversity, abundance and the distribution pattern of dinoflagellates and ciliates during spring and summer in coastal waters of Algeria (southwestern Mediterranean Sea)

Published online by Cambridge University Press:  18 July 2023

Redha Sidi Ali*
Affiliation:
Pelagic-ecosystem Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP. 32, El-Alia Bab-Ezzouar 16111, Algiers, Algeria
Ghollame Ellah Yacine Khames
Affiliation:
Pelagic-ecosystem Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP. 32, El-Alia Bab-Ezzouar 16111, Algiers, Algeria
Zakia Alioua
Affiliation:
Fisheries Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP. 32, El-Alia Bab-Ezzouar 16111, Algiers, Algeria
Rabea Seridji
Affiliation:
Pelagic-ecosystem Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP. 32, El-Alia Bab-Ezzouar 16111, Algiers, Algeria
*
Corresponding author: Redha Sidi Ali; Email: redha221@gmail.com

Abstract

The objective of this study was to assess the distribution patterns of dinoflagellates and ciliates communities during planktonic bloom and post-bloom development periods, in relation to environmental parameters. Their distribution was studied during spring and summer 2012, in coastal waters of Algeria at six sampling stations (four sampling layers). Overall, 116 species were identified, including 98 dinoflagellates. The species richness of microzooplankton was higher in summer (81 species: 67 dinoflagellates, seven tintinnids and seven ciliates) than in spring (76 species: 72 dinoflagellates, three naked ciliates and one tintinnid). Significant difference in total abundances was observed between spring (median = 145 ind l−1) and summer (median = 90 ind l−1) but no significance (P > 0.05, Mann–Whitney test) in Shannon–Wiener (H′spring: 3.31 bits ind−1; H′summer: 3.70 bits ind−1) and evenness (Espring: 0.77; Esummer: 0.84) indices. The ciliate average abundance was higher in summer (11.3 ind l−1) than in spring (1.95 ind l−1), whereas dinoflagellate average abundance was lower in summer (127.92 ind l−1) than spring (190.19 ind l−1). Non-metric multidimensional scaling was used to identify different sample assemblages. It showed that temperature and salinity influenced the distribution pattern in the canonical correspondence analysis followed by chlorophyll a, silicate and nitrate concentrations. Our framework provides insight regarding trait trade off with implications for feedbacks to ecosystems, aiming to bridge the gap of plankton community ecology in Algeria. It elaborates a taxonomic list of dinoflagellates and ciliates in the marine pelagic ecosystem and performs their ecological characterization in their environment.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abboud-Abi Saab, M (2008) Tintinnids of the Lebanese Coastal Waters (Eastern Mediterranean). CNRS-Lebanon/UNEP/MAP/RAC/SPA. https://link.springer.com/book/10.1007/978-3-319-71404-2Google Scholar
Avancini, M, Cicero, AM, Di Girolamo, I, Innamorati, M and Magaletti, E (2006) Guida al riconoscimento del plancton dei mari Italiani – Fitoplancton. Ministero dell'Ambiente della Tutela del Territorio e del Mare–DPN ICRAM-Instituto Centrale per la Ricerca Scientifica e Tecnologica Applicata al Mare, Roma.Google Scholar
Benabdi, M (2020) Inventaire des gorgones de la côte algérienne; étude de la démographie, biométrie et statut de conservation de la gorgone blanche Eunicella singularis (Esper, 1791) des îles de l'Ouest algérien (Méditerranée occidentale). Université Oran 1, Ahmed Ben Bella.Google Scholar
Borcard, D, Gillet, F and Legendre, P (2018) Numerical Ecology with R, 2nd Edn. Springer International Publishing.10.1007/978-3-319-71404-2CrossRefGoogle Scholar
Boudjenah, M, Mokrane, Z and Soualili, D (2019) Diversity of Phytoplanktonic populations along the Algerian. Biodiversity Journal 10, 8192.Google Scholar
Calbet, A (2008) The trophic roles of microzooplankton in marine systems. International Council for the Exploration of the Sea. Oxford Journals. 65, 325331.Google Scholar
Calbet, A and Alcaraz, M (2007) Microzooplankton, key organisms in the pelagic food web. Fisheries and Aquaculture 5, 227242.Google Scholar
Calbet, A and Landry, MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49, 5157.10.4319/lo.2004.49.1.0051CrossRefGoogle Scholar
Calbet, A and Saiz, E (2005) The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology 38, 157167.10.3354/ame038157CrossRefGoogle Scholar
Caron, DA and Hutchins, DA (2013) The effects of changing climate on microzooplankton grazing and community structure: Drivers, predictions and knowledge gaps. Journal of Plankton Research 35, 235252.10.1093/plankt/fbs091CrossRefGoogle Scholar
Cerino, F, Fornasaro, D, Kralj, M, Giani, M and Cabrini, M (2019) Phytoplankton temporal dynamics in the coastal waters of the north-eastern Adriatic Sea (Mediterranean Sea) from 2010 to 2017. Nature Conservation 34, 343.10.3897/natureconservation.34.30720CrossRefGoogle Scholar
Chaouadi, M and Hafferssas, A (2018) Seasonal variability in diversity and abundance of the free-living pelagic copepod community of the Algerian coasts (SW Mediterranean Sea). Crustaceana 91, 913946.10.1163/15685403-00003805CrossRefGoogle Scholar
Clarke, KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.10.1111/j.1442-9993.1993.tb00438.xCrossRefGoogle Scholar
Costas, E and Lopez-Rodas, V (1991) A comparative study of DNA content in six dinoflagellate species. Scientia Marina, 55, 369375.Google Scholar
Dale, B, Edwards, M and Reid, PC (2006) Climate change and harmful algal blooms. In Ecology of Harmful Algae. Ecological Studies, vol 189. Berlin Heidelberg: Springer, 367378.10.1007/978-3-540-32210-8_28CrossRefGoogle Scholar
Daly Yahia-Kéfi, O, Souissi, S, Gómez, F and Yahia, MND (2005) Spatio-temporal distribution of the dominant diatom and dinoflagellate species in the Bay of Tunis (SW Mediterranean Sea). Mediterranean Marine Science 6, 1734.10.12681/mms.190CrossRefGoogle Scholar
Dolan, JR, Montagnes, DJS, Agatha, S, Coats, DW and Stoecker, DK (2012 a) The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton. Chichester,UK: Wiley-Blackwell, a John Wiley & Sons, Ltd.10.1002/9781118358092CrossRefGoogle Scholar
Dolan, JR, Pierce, RW, Yang, EJ and Kim, SY (2012 b) Southern Ocean biogeography of tintinnid ciliates of the marine plankton. Journal of Eukaryotic Microbiology 59, 511519.10.1111/j.1550-7408.2012.00646.xCrossRefGoogle ScholarPubMed
Drira, Z, Hamza, A, Hassen, MB, Ayadi, H, Bouain, A and Aleya, L (2010) Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabes (south Ionian Sea, Tunisia). Journal of the Marine Biological Association of the United Kingdom 90, 12031215.10.1017/S0025315409990774CrossRefGoogle Scholar
Drira, Z, Hassen, MB, Hamza, A, Rebai, A, Bouain, A, Ayadi, H and Aleya, L (2009) Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabes. Journal of the Marine Biological Association of the United Kingdom 89, 15591569.10.1017/S002531540900023XCrossRefGoogle Scholar
Edler, L and Elbrächter, M (2010) The Utermöhl method for quantitative phytoplankton analysis. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis 110, 1320.Google Scholar
El Hourany, R, Abboud-abi Saab, M, Faour, G, Mejia, C, Crépon, M and Thiria, S (2019) Phytoplankton diversity in the Mediterranean Sea from satellite data using self-organizing maps. Journal of Geophysical Research: Oceans 124, 58275843.10.1029/2019JC015131CrossRefGoogle Scholar
Elloumi, J, Drira, Z, Hamza, A and Ayadi, H (2015) Space-time variation of ciliates related to environmental factors in 15 nearshore stations of the Gulf of Gabes. Mediterranean Marine Science 16, 162179.Google Scholar
Elloumi, J, Guermazi, W, Ayadi, H, Bouain, A and Aleya, L (2009) Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom 89, 243253.10.1017/S0025315408002269CrossRefGoogle Scholar
Ferrier-Pages, C and Rassoulzadegan, F (1994) Seasonal impact of the microzooplankton on pico- and nanoplankton growth rates in the northwest Mediterranean Sea. Marine Ecology-Progress Series 108, 283294.10.3354/meps108283CrossRefGoogle Scholar
Froneman, PW (2004) Protozooplankton community structure and grazing impact in the eastern Atlantic sector of the Southern Ocean in austral summer 1998. Deep-Sea Research Part II: Topical Studies in Oceanography 51, 26332643.10.1016/j.dsr2.2004.09.001CrossRefGoogle Scholar
Gardener, M (2014) Community Ecology: Analytical Methods Using R and Excel. London, UK: Pelagic Publishing Ltd.Google Scholar
Gasol, JM, Cardelús, C, Morán, XAG, Balagué, V, Forn, I, Marrasé, C, Massana, R, Pedrós-Alió, C, Sala, MM and Simó, R (2016) Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site. Scientia Marina 80, 6377.10.3989/scimar.04480.06ECrossRefGoogle Scholar
Gómez, F (2003) Checklist of Mediterranean free-living dinoflagellates. Botanica Marina 46, 215242.10.1515/BOT.2003.021CrossRefGoogle Scholar
Gómez, F and Gorsky, G (2003) Annual microplankton cycles in Villefranche Bay, Ligurian Sea, NW Mediterranean. Journal of Plankton Research 25, 323339.10.1093/plankt/25.4.323CrossRefGoogle Scholar
Gómez, F, Moreira, D and López-García, P (2010) Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist 161, 3554.10.1016/j.protis.2009.06.004CrossRefGoogle Scholar
Gribble, KE, Nolan, G and Anderson, DM (2007) Biodiversity, biogeography and potential trophic impact of Protoperidinium spp. (Dinophyceae) off the southwestern coast of Ireland. Journal of Plankton Research 29, 931947.10.1093/plankt/fbm070CrossRefGoogle Scholar
Hannachi, I, Drira, Z, Hassen, MB, Hamza, A, Ayadi, H and Aleya, L (2011) Species composition and spatial distribution of abundances and biomass of phytoplankton and ciliates during summer stratification in the Gulf of Hammamet (Tunisia). Journal of the Marine Biological Association of the United Kingdom 91, 14291442.10.1017/S0025315410002092CrossRefGoogle Scholar
Hays, GC, Richardson, AJ and Robinson, C (2005) Climate change and marine plankton. Trends in Ecology & Evolution 20, 337344.10.1016/j.tree.2005.03.004CrossRefGoogle ScholarPubMed
Hinder, SL, Hays, GC, Edwards, M, Roberts, EC, Walne, AW and Gravenor, MB (2012) Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change 2, 271275.10.1038/nclimate1388CrossRefGoogle Scholar
Horner, RA, Postel, JR, Halsband-Lenk, C, Pierson, JJ, Pohnert, G and Wichard, T (2005) Winter-spring phytoplankton blooms in Dabob Bay, Washington. Progress in Oceanography 3–4, 286313.10.1016/j.pocean.2005.09.005CrossRefGoogle Scholar
Ignatiades, L and Gotsis-Skretas, O (2010) A review on toxic and harmful algae in Greek coastal waters (E. Mediterranean Sea). Toxins 2, 10191037.10.3390/toxins2051019CrossRefGoogle Scholar
Irigoien, X, Huisman, J and Harris, RP (2004) Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863867.10.1038/nature02593CrossRefGoogle ScholarPubMed
Ismael, AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. Journal of Plankton Research 25, 193202.10.1093/plankt/25.2.193CrossRefGoogle Scholar
Jacobson, DM and Anderson, DM (1986) Thecate heterophic dinoflagellates: Feeding behavior and mechanisms 1. Journal of Phycology 22, 249258.10.1111/j.1529-8817.1986.tb00021.xCrossRefGoogle Scholar
Kchaou, N, Elloumi, J, Drira, Z, Hamza, A, Ayadi, H, Bouain, A and Aleya, L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuarine, Coastal and Shelf Science 83, 414424.10.1016/j.ecss.2009.04.019CrossRefGoogle Scholar
Khames, GEY and Hafferssas, A (2019) Abundance and species composition of gelatinous zooplankton in Habibas Islands and Sidi Fredj (Western Mediterranean Sea). Cahiers De Biologie Marine 60, 143152.Google Scholar
Kherchouche, A and Hafferssas, A (2020) Species composition and distribution of Medusae (Cnidaria: Medusozoa) in the Algerian coast between 2° e and 7° e (SW Mediterranean Sea). Mediterranean Marine Science 21, 5261.10.12681/mms.20849CrossRefGoogle Scholar
Kremp, A, Tamminen, T and Spilling, K (2008) Dinoflagellate bloom formation in natural assemblages with diatoms: Nutrient competition and growth strategies in Baltic spring phytoplankton. Aquatic Microbial Ecology 50, 181196.10.3354/ame01163CrossRefGoogle Scholar
Lakkis, S and Novel-lakkis, V (1981) Composition, annual cycle and species diversity of the phytoplankton in Lebanese coastal water. Journal of Plankton Research 3, 123136.10.1093/plankt/3.1.123CrossRefGoogle Scholar
Larbi Doukara, K (2019) Density and ecological aspect of endangered limpet Patella ferruginea in the western Algerian coast: Implications for the Conservation. Egyptian Journal of Aquatic Biology and Fisheries 23, 6576.10.21608/ejabf.2019.28015CrossRefGoogle Scholar
Lavrentyev, PJ, Franzè, G and Moore, FB (2019) Microzooplankton distribution and dynamics in the eastern Fram Strait and the Arctic Ocean in May and August 2014. Frontiers in Marine Science 6, 264.10.3389/fmars.2019.00264CrossRefGoogle Scholar
Laybourn-Parry, J and Parry, J (2000) Flagellates and the microbial loop. Systematics Association Special Volume 59, 216239.Google Scholar
LeGresley, M and McDermott, G (2010) Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. UNESCO (IOC Manuals and Guides) 55, 2530.Google Scholar
Löder, MGJ, Meunier, C, Wiltshire, KH, Boersma, M and Aberle, N (2011) The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Marine Biology 158, 15511580.10.1007/s00227-011-1670-2CrossRefGoogle Scholar
Lohrenz, SE, Wiesenburg, DA, DePalma, IP, Johnson, KS and Gustafson, DE Jr (1988) Interrelationships among primary production, chlorophyll, and environmental conditions in frontal regions of the western Mediterranean Sea. Deep Sea Research Part A. Oceanographic Research Papers 35, 793810.10.1016/0198-0149(88)90031-3CrossRefGoogle Scholar
Lynn, DH (2008) The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Dordrecht Smilauer: Springer, p. 272. ISBN: 978-1-118-68792-5Google Scholar
Magurran, AE (2013) Measuring biological diversity. In Current Biology, Vol. 31. New York: John Wiley & Sons.Google Scholar
Makhlouf, A, Touahria, T and Seridji, R (2014) Composition, densité et biomasse des peuplements phytoplanctoniques au niveau des îles Habibas (Oran, Algérie) durant la période printanière. In 40ème anniversaire de l'USTHB- Journées scientifiques de la FSB, p. 33.Google Scholar
Martin-Jézéquel, V, Hildebrand, M and Brzezinski, MA (2000) Silicon metabolism in diatoms: Implications for growth. Journal of Phycology 36, 821840.10.1046/j.1529-8817.2000.00019.xCrossRefGoogle Scholar
Mclachlan, A and Defeo, O (2018) The ecology of sandy shores. In The Ecology of Sandy Shores, 3rd Edn. London, UK: Academic Press, an imprint of Elsevier. ISBN: 978-0-12-809467-9Google Scholar
Menden-Deuer, S, Lessard, EJ, Satterberg, J and Grünbaum, D (2005) Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquatic Microbial Ecology 41, 145152.10.3354/ame041145CrossRefGoogle Scholar
Morán, X and Estrada, M (2005) Winter pelagic photosynthesis in the NW Mediterranean. Deep Sea Research Part I: Oceanographic Research Papers 52, 18061822.10.1016/j.dsr.2005.05.009CrossRefGoogle Scholar
Mozetič, P, Francé, J, Kogovšek, T, Talaber, I and Malej, A (2012) Plankton trends and community changes in a coastal sea (northern Adriatic): Bottom-up vs. top-down control in relation to environmental drivers. Estuarine, Coastal and Shelf Science 115, 138148.10.1016/j.ecss.2012.02.009CrossRefGoogle Scholar
National Aeronautics and Space Administration (2022). Available at https://www.nasa.gov/ (Accessed 27 February 2022).Google Scholar
Ohtsuka, S, Yamaguchi, A and Hanamura, Y (2011) Life cycle and ecological roles of ciliates associated with marine zooplankters. Bulletin of the Plankton Society of Japan 58, 8793.Google Scholar
Paraskevi, P, Giannakourou, A and Christaki, U (2001) Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquatic Microbial Ecology 24, 297311.Google Scholar
Peyre, O, Telailia, S, Benhartiga, S and Beddek, M (2018) The Eleonora's Falcon Falco eleonorae in Algeria: Status, population size, distribution and update of the world population size. Alauda 86, 109116.Google Scholar
Polat, S and Koray, T (2007) Planktonic dinoflagellates of the northern Levantine Basin, northeastern Mediterranean Sea. European Journal of Protistology 43, 193204.10.1016/j.ejop.2007.03.003CrossRefGoogle ScholarPubMed
R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.r-project.org/.Google Scholar
Rekik, A, Ben Salem, Z, Ayadi, H and Elloumi, J (2016) Species composition and spring ciliates variability on the south coast of Sfax (Eastern Mediterranean Sea). Journal of Applied Environmental and Biological Sciences 6, 5771.Google Scholar
Rekik, A, Kmiha-Megdiche, S, Drira, Z, Pagano, M, Ayadi, H, Zouari, AB and Elloumi, J (2021) Spatial variations of planktonic ciliates, predator-prey interactions and their environmental drivers in the Gulf of Gabes-Boughrara lagoon system. Estuarine, Coastal and Shelf Science 254, 107315.10.1016/j.ecss.2021.107315CrossRefGoogle Scholar
Rose, JM and Caron, DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography 52, 886895.10.4319/lo.2007.52.2.0886CrossRefGoogle Scholar
Saito, H, Ota, T, Suzuki, K, Nishioka, J and Tsuda, A (2006) Role of heterotrophic dinoflagellate Gyrodinium sp. in the fate of an iron induced diatom bloom. Geophysical Research Letters 33, L09602.10.1029/2005GL025366CrossRefGoogle Scholar
Schultes, S, Lambert, C, Pondaven, P, Corvaisier, R, Jansen, S and Ragueneau, O (2010) Recycling and uptake of Si(OH)4 when protozoan grazers feed on diatoms. Protist 161, 288303.10.1016/j.protis.2009.10.006CrossRefGoogle ScholarPubMed
Sherr, EB and Sherr, BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81, 293308.10.1023/A:1020591307260CrossRefGoogle ScholarPubMed
Sherr, EB and Sherr, BF (2007) Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology Progress Series 352, 187197.10.3354/meps07161CrossRefGoogle Scholar
Siokou-Frangou, I, Christaki, U, Mazzocchi, MG, Montresor, M, D'Alcala Ribera, M, Vaqúe, D and Zingone, A (2010) Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 15431586.10.5194/bg-7-1543-2010CrossRefGoogle Scholar
Smalley, GW, Coats, DW and Adam, EJ (1999) A new method using fluorescent microspheres to determine grazing on ciliates by the mixotrophic dinoflagellate Ceratium furca. Aquatic Microbial Ecology 17, 167179.10.3354/ame017167CrossRefGoogle Scholar
Smayda, TJ and Reynolds, CS (2003) Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research 49, 95106.10.1016/S1385-1101(02)00219-8CrossRefGoogle Scholar
Smilauer, P and Leps, J (2014) Multivariate Analysis of Ecological Data Using CANOCO 5. New York: Cambridge University Press.10.1017/CBO9781139627061CrossRefGoogle Scholar
SPAMI Collaborative Platform (2019) Habibas islands. Available at http://spami.medchm.net/en/spami-list/habibas-islands (Accessed 10 July 2021).Google Scholar
Stoecker, DK (1999) Mixotrophy among dinoflagellates. Journal of Eukaryotic Microbiology 46, 397401.10.1111/j.1550-7408.1999.tb04619.xCrossRefGoogle Scholar
Stoecker, DK and Capuzzo, JM (1990) Predation on protozoa: Its importance to zooplankton. Journal of Plankton Research 12, 891908.Google Scholar
Stoecker, DK, Hansen, PJ, Caron, DA and Mitra, A (2017) Mixotrophy in the marine plankton. 9, 311335. http://dx.doi.org/10.1146/Annurev-Marine-010816-060617.Google Scholar
Strom, SL, Fredrickson, KA and Bright, KJ (2019) Microzooplankton in the coastal Gulf of Alaska: Regional, seasonal and interannual variations. Deep-Sea Research Part II: Topical Studies in Oceanography 165, 192202.10.1016/j.dsr2.2018.07.012CrossRefGoogle Scholar
Strom, SL and Strom, MW (1996) Microplankton growth, grazing, and community structure in the northern Gulf of Mexico. Marine Ecology Progress Series 130, 229240.10.3354/meps130229CrossRefGoogle Scholar
Strüder-Kypke, MC, Kypke, ER, Agatha, S, Warwick, J and Montagnes, DJS (2001) Guide to UK Coastal Planktonic Ciliates. DJS Montagnes, University of Liverpool. Available at http://www.Liv.Ac.Uk/Ciliate.Google Scholar
Tiselius, P and Kuylenstierna, M (1996) Growth and decline of a diatom spring bloom: Phytoplankton species composition, formation of marine snow and the role of heterotrophic dinoflagellates. Journal of Plankton Research 18, 133155.Google Scholar
Tomas, CR (1997) Identifying Marine Phytoplankton. San Diego: Academic Press.Google Scholar
Tunin-Ley, A, Labat, JP, Gasparini, S, Mousseau, L and Lemée, R (2007) Annual cycle and diversity of species and infraspecific taxa of Ceratium (Dinophyceae) in the Ligurian Sea, northwest Mediterranean. Journal of Phycology 43, 11491163.10.1111/j.1529-8817.2007.00417.xCrossRefGoogle Scholar
UNEP/MAP-SPA/RAC (2020) SPAMIs in the Mediterranean – January 2020.Google Scholar
Van Rossum, G (2021, October 4) Python Programming Language. Available at https://www.python.org/.Google Scholar
Xu, Z and Chen, Y (1989) Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea. Chinese Journal of Ecology 8, 1315.Google Scholar