Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T22:30:29.891Z Has data issue: false hasContentIssue false

Individual growth of the squid Illex argentinus off Brazil as reconstructed from the gladius microstructure

Published online by Cambridge University Press:  19 March 2013

R. Schroeder*
Affiliation:
Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí. Rua Uruguai. 458. Centro, Itajaí—SC, Brazil
J.A.A. Perez
Affiliation:
Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí. Rua Uruguai. 458. Centro, Itajaí—SC, Brazil
*
Correspondence should be addressed to: R. Schroeder, Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí. Rua Uruguai. 458. Centro, Itajaí—SC, Brazil email: schroederrafael@terra.com.br

Abstract

Individual growth histories of the shortfin squid Illex argentinus were reconstructed in 1512 individuals obtained during seven years of commercial exploitation in southern-south-eastern Brazil. Growth increments were directly measured on the gladius dorsal surface from the anterior part to posterior end in two-thirds of the entire length. Gladius growth increments were deposited at the same rate as statolith rings and the daily nature of the growth increments was supported. Because gladius length is strongly related to mantle length, growth increments closely approximated mantle length growth rates, allowing the reconstruction of both size- and age-dependent growth. Individual reconstruction was possible between 4 and 347 mm of gladius length, almost the entire life cycle of the species. The variability of the acceleration in gladius growth evidenced four life history transitions where the most noticeable occurred between paralarval/juvenile stages, delimiting male/female size differentiation. The changes in acceleration in growth throughout the size-range may be influenced by the thermal gradients experienced by individuals during life history events transitions in Brazilian waters.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arkhipkin, A.I. and Bizikov, V.A. (1991) A comparative analysis of age and growth estimation using statolith and gladius in squids. In Jereb, P., Ragonese, S. and Boletzky, S.V. (eds) Proceedings of the International Workshop, Instituto di Tecnologia della Pesca e del Pescato, Mazzara del Vallo, Sicilly, Italy, 9–14 October 1989. Squid Age Determinations Using Statoliths. Mazzara del Vallo: N.T.R–I.T.T.P. Special Publication No. 1, pp. 1933.Google Scholar
Arkhipkin, A.I. and Scherbich, ZH.N. (1991) Crecimiento y estructura intraspecifica del calamar Illex argentinus (Castellanos, 1960) (Ommastrephidae) en invierno y primavera el Atlantico sudoccidental. Scientia Marina 55, 619627.Google Scholar
Arkhipkin, A.I. and Perez, J.A.A. (1998) Life history reconstruction. In Rodhouse, P.G., Dawe, E.G. and O'Dor, R.K. (eds) Squid recruitment dynamics. The genus Illex as a model, the commercial Illex species. Influences on variability. FAO Fisheries Technical Paper 376, pp. 157180.Google Scholar
Arkhipkin, A.I. and Roa-Ureta, R. (2005) Identification of ontogenetic growth models for squid. Marine and Freshwater Research 56, 371386.CrossRefGoogle Scholar
Arkhipkin, A.I., Bizikov, V.A. and Fuchs, D. (2012) Vestigial phragmocone in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda). Deep-Sea Research I 61, 109122.CrossRefGoogle Scholar
Balch, N., Sirois, A. and Hurley, G.V. (1988) Growth increments in statoliths from paralarvae of the ommastrephid squid Illex (Cephalopoda: Teuthoidea). Malacologia 29, 103112.Google Scholar
Beamish, R.J. and Fournier, D.A. (1981) A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982983.CrossRefGoogle Scholar
Bizikov, V.A. (1991) A new method of squid age determination using the gladius. In Jereb, P., Ragonese, S. and Boletzky, S.V. (eds) Proceedings of the International Workshop, Instituto di Tecnologia della Pesca e del Pescato, Mazzara del Vallo, Sicilly, Italy, 9–14 October 1989. Squids Age Determinations Using Statoliths. Mazzara del Vallo: N.T.R–I.T.T.P. Special Publication, pp. 3951.Google Scholar
Bizikov, V.A. (1995) Growth of Sthenoteuthis oualaniensis using a new method based on gladius microestruture. ICES Marine Science Symposia 199, 445458.Google Scholar
Boyle, P.R. and Rodhouse, P.G. (2005) Cephalopods: ecology and fisheries. Oxford: Blackwell.CrossRefGoogle Scholar
Boyle, P.R. and Boletzky, S.V. (1996) Cephalopod populations: definitions and dynamics. Philosophical Transactions of the Royal Society of London B 351, 9851002.Google Scholar
Brunetti, N.E. (1990) Escala para la identificación de estadios de madurez sexual del calamar (Illex argentinus). Frente Marítimo 7, 4552.Google Scholar
Brunetti, N.E., Ivanovic, M.L. and Elena, B. (1998) Calamares omastrefídos (Cephalopoda: Ommastrephidae). In Boschi, E.E. (ed.) El mar argentino y sus recursos pesqueros. Los moluscos de interés pesquero. Cultivos y estratégias reproductivas de bivalvos y equinoideos, Mar del Plata: Offset Vega, pp. 3768.Google Scholar
Chang, W.Y.B. (1982) A statistical method for evaluating the reproductibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39, 12081210.CrossRefGoogle Scholar
Haimovici, M., Brunetti, N.E., Rodhouse, P.G., Csirke, J. and Leta, R.H. (1998) Illex argentinus. In Rodhouse, P.G.Dawe, E.G. and O'Dor, R.K. (eds) Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Influences on variability. FAO Fisheries Technical Paper 376, pp. 2758.Google Scholar
Haimovici, M., Rossi-Wongtschowski, C.L.B., Bernardes, R.A., Fisher, L.G., Vooren, C.M., Santos, R.A., Rodrigues, A.R. and Santos, S. (2008) Prospecção pesqueira de espécies demersais com rede de arrasto-de-fundo na Região Sudeste-Sul do Brasil. São Paulo: Instituto Oceanográfico—USP, pp. 1631 [Série Documentos REVIZEE—Score Sul].Google Scholar
Hatanaka, H., Kawahara, S., Uozumi, Y. and Kasahara, S. (1985) Comparison of life cycles of five ommastrephid squids fished by Japan: Todarodes pacificus, Illex illecebrosus, Illex argentinus, Nototodarus sloani sloani, and Nototodarus sloani gouldi. NAFO Scientific Council Studies 9, 5968.Google Scholar
Hunt, S. and Nixon, M. (1981) A comparative study of protein composition in the chitin–protein complexes of the beak, pen, sucker disc, radula and oesophageal cuticle of cephalopods. Comparative Biochemistry and Physiology 68B, 535546.Google Scholar
Hurley, G.V. and Beck, P. (1979) The observation of growth rings in statoliths from the ommastrephidae squid, Illex illecebrosus. Bulletin of the American Malacological Union 1, 2329.Google Scholar
Jackson, G.D., Arkhipkin, A., Bizikov, V.A. and Hanlon, R.T. (1993) Laboratory and field corroboration of age and growth from statoliths and gladii of the loliginid squid Sepioteuthis lessoniana (Mollusca: Cephalopoda). In Okutami, T., O'Dor, R.K. and Kubodera, T. (eds) Recent advances in cephalopod fisheries biology. Tokyo: Tokai University Press, pp. 189199.Google Scholar
LaRoe, E.T. (1971) The culture and maintenance of the loliginid squid Sepioteuthis sepioidea and Doryteuthis plei. Marine Biology 9, 925.CrossRefGoogle Scholar
Morris, C.C. and Aldrich, F.A. (1985) Statolith length and increment number for age determination of Illex illecebrosus (Lesueur, 1821) (Cephalopoda, Ommastrephidae). NAFO Scientific Council Studies 9, 101106.Google Scholar
O'Dor, R.K. (1983) Illex illecebrosus. In Boyle, P.R. (ed.) Cephalopod life cycles. Volume I,. London: Academic Press, p. 175199.Google Scholar
Perez, J.A.A. (1995) The early life history of the short-fined squid Illex illecebrous (Cephalopoda: Ommastrephidade) as reconstruted from the gladius structure. PhD thesis. Dalhousie University, Halifax, Canada.Google Scholar
Perez, J.A.A., O'Dor, R.P., Beck, P.G. and Dawe, E.G. (1996) Evaluation of gladius structure for age and growth studiues of the short-fined squid Illex illecebrous (Theutoidea: Ommastrephidade). Canadian Journal of Fisheries and Aquatic Sciences 53, 28372846.Google Scholar
Perez, J.A.A. and O'Dor, R.K. (1998) The impact of environmental gradients on the early life inshore migration of the short-finned squid, Illex illecebrosus. South African Journal of Marine Science 20, 293303.CrossRefGoogle Scholar
Perez, J.A.A. and O'Dor, R.K. (2000) Critical transitions in early life histories of short-finned squid, Illex illecebrosus, as reconstructed from gladius growth. Journal of the Marine Biological Association of the United Kingdom 80, 509514.CrossRefGoogle Scholar
Perez, J.A.A., Lucato, S.H.B., Andrade, A.H., Pezzuto, P.R. and Rodrigues-Ribeiro, M. (1998) Programa de amostragem da pesca industrial desenvolvido para o porto de Itajaí, SC. Notas Técnicas da FACIMAR 2, 93108.Google Scholar
Perez, J.A.A., Aguiar, D.C. and Santos, J.A.T. (2006) Gladius and statolith as tools for age and growth studies of the squid Loligo plei (Teuthida: Loliginidae) off Southern Brazil. Brazilian Archives of Biology and Technology 49, 747755.CrossRefGoogle Scholar
Perez, J.A.A., Silva, T.N., Schroeder, R., Schwarz, R. and Martins, R.S. (2009) Biological patterns of the Argentine shortfin squid Illex argentinus in the slope trawl fishery off Brazil. Latin American Journal of Aquatic Research 37, 119.Google Scholar
Sakai, M., Brunetti, N., Ivanovic, M., Elena, B. and Nakamura, Y. (2004) Interpretation of statolith microstructure in reared hatchling paralarvae of the squid Illex argentinus. Marine and Freshwater Research 55, 403413.CrossRefGoogle Scholar
Santos, R.A. and Haimovici, M. (1997) Reproductive biology of winter–spring spawners of Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil. Scientia Marina 61, 5364.Google Scholar
Schroeder, R. and Perez, J.A.A. (2010) The study of the intra-specific growth variability of Illex argentinus (Cephalopoda: Teuthida) in Brazilian waters as reconstructed from the gladius microstructure. Fisheries Research 106, 163170.CrossRefGoogle Scholar
Schwarz, R. and Perez, J.A.A. (2010) Growth model identification of short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil using statoliths. Fisheries Research 106, 177184.CrossRefGoogle Scholar
Schwarz, R. and Perez, J.A.A. (2012) Age structure and life cycles of the Argentine shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in southern Brazil. Journal of the Marine Biological Association of the United Kingdom 92, 19.Google Scholar
Uozumi, T. and Shiba, C. (1993) Growth and age composition of Illex argentinus (Cephalopoda: Oegospsida) based on daily increment counts in statoliths. In Okutani, T., O'Dor, R.K. and Kubodera, T. (eds) Recent advances in cephalopod fisheries biology. Tokyo: Tokai University Press, pp. 591605.Google Scholar
Vidal, E.A.G., Haimovici, M. and Hackbart, V.C.S. (2010) Distribution of paralarvae and small juvenile cephalopods in relation to primary production in an upwelling area off southern Brazil. ICES Journal of Marine Science 67, 13461352.CrossRefGoogle Scholar
Wood, J.B. and O'Dor, R.K. (2000) Do larger cephalopods live longer? Effects of temperature and phylogeny on interspecific comparisons of age and size at maturity. Marine Biology 136, 9199.CrossRefGoogle Scholar
Zaleski, T. (2010) Ciclo de vida e ecologia da lula Lolliguncula brevis na Armação de Itapocoroy, Santa Catarina, Brasil. PhD thesis. Universidade do Vale do Itajaí, Itajaí, Brasil.Google Scholar
Zar, J.H. (1984) Bioestatistical analysis. 2nd edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar