Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T08:02:30.345Z Has data issue: false hasContentIssue false

Growth assessment of the sea urchin Pseudechinus magellanicus (Temnopleuridae) in coastal habitats of central Patagonia, Argentina

Published online by Cambridge University Press:  22 February 2024

Damián Gaspar Gil*
Affiliation:
Laboratorio de Bentos Costero Patagónico, Instituto de Desarrollo Costero (LBCP – IDC), Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Ciudad Universitaria, Comodoro Rivadavia, CP 9000, Chubut, Argentina Departamento de Biología y Ambiente, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
Héctor Eliseo Zaixso
Affiliation:
Laboratorio de Bentos Costero Patagónico, Instituto de Desarrollo Costero (LBCP – IDC), Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Ciudad Universitaria, Comodoro Rivadavia, CP 9000, Chubut, Argentina
*
Corresponding author: Damián Gaspar Gil; Email: gil_damian@hotmail.com

Abstract

Pseudechinus magellanicus is an ecologically important and small sea urchin in coastal and nearshore habitats off southern South America. We provide the first growth assessment for the species using tag (calcein) and recapture procedures in central Patagonia (Argentina). The individual growth rate of P. magellanicus ranged 0.05–1.3 mm year−1. The Brody–Bertalanffy and Richards growth models provided asymptotic maximum diameters of 29.89 and 26.01 mm, respectively. Both models yielded low values for the growth constant (k), with 0.046 (Brody–Bertalanffy) and 0.062 (Richards). Maximum instantaneous growth rate was estimated at 1.36 mm year−1 for the Brody–Bertalanffy model, and 2.69 mm year−1 for the Richards model. Model selection (corrected Akaike information criterion) showed a slight better fit for the Brody–Bertalanffy growth model compared to the Richards model. A significant variability in growth was observed within the studied population, which can be attributed to genetic factors and micro-environmental effects. P. magellanicus displays a combination of slow growth and small body size, with the lowest recorded growth performance index (θ = 3.72) recorded so far in sea urchins. The species has a long lifespan, with the most common adult sizes estimated to range from 15 to 21 years according to the Brody–Bertalanffy model. Due to the broad geographic distribution and occupation of contrasting habitats, further studies are necessary to explore growth of P. magellanicus under different environmental conditions and/or along a bathymetric gradient.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The author deceased on 29/04/2015.

References

Balzi, P (2005) Ecología y biología de la reproducción de la centolla Lithodes santolla del golfo San Jorge (PhD Dissertation). Universidad Nacional de la Patagonia San Juan Bosco, Argentina.Google Scholar
Barrales, HL and Lobban, CS (1975) The comparative ecology of Macrocystis pyrifera, with emphasis on the forests of Chubut, Argentina. Journal of Ecology, 63, 657677.CrossRefGoogle Scholar
Bernasconi, I (1953) Monografía de los equinoideos Argentinos. Anales del Museo de Historia Natural de Montevideo 6, 158.Google Scholar
Brey, T (1991) Population dynamics of Sterechinus antarcticus (Echinodermata: Echinoidea) on the Weddell Sea Shelf and slope, Antarctica. Antarctic Science, 3, 251256.CrossRefGoogle Scholar
Brey, T, Pearse, JS, Basch, L, McClintock, J and Slattery, M (1995) Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Marine Biology 124, 279292.CrossRefGoogle Scholar
Brogger, MI, Gil, DG, Rubilar, T, Martínez, MI, Díaz de Vivar, ME, Escolar, M, Epherra, L, Pérez, AF and Tablado, A (2013) Echinoderms from Argentina: biodiversity, distribution and current state of knowledge. In Alvarado, JJ and Solís-Marín, FA (eds.), Echinoderm Research and Diversity in Latin America. Berlin: Springer, pp. 359403. https://doi.org/10.1007/978-3-642-20051-9_11CrossRefGoogle Scholar
Burnham, KP and Anderson, DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer.Google Scholar
Castilla, JC (1985) Food webs and functional aspects of the kelp, Macrocystis pyrifera, community in the Beagle Channel, Chile. In Siegfried, WR (ed.), Antarctic Nutrient Cycles and Food Webs. Berlin: Springer, pp. 407414. https://doi.org/10.1007/978-3-642-82275-9_57CrossRefGoogle Scholar
Clarke, A (1991) What is cold adaptation and how should we measure it? American Zoologist 31, 8192.CrossRefGoogle Scholar
Détrée, C, Navarro, JM, Font, A and Gonzalez, M (2020) Species vulnerability under climate change: study of two sea urchins at their distribution margin. Science of the Total Environment, 728, 138850.CrossRefGoogle ScholarPubMed
Détrée, C, Navarro, JM, Garrido, I, Bruning, P and Leclerc, JC (2023) Evaluation of sub-Antarctic and Antarctic sea urchins’ thermal reaction norm through righting behavior and comparison with in situ measurements. Journal of Thermal Biology, 112, 103496.CrossRefGoogle ScholarPubMed
Ebert, TA (1988) Calibration of natural growth lines in ossicles of two sea urchins, Strongylocentrotus purpuratus and Echinometra mathaei, using tetracycline. In Burke, RD, Mladenov, PV, Lambert, P and Parsley, RL (eds.), Echinoderm Biology. Rotterdam: AA Balkema, pp. 435444.Google Scholar
Ebert, TA (2020) Growth and survival of postsettlement sea urchins. In Lawrence, JM (ed.), Sea Urchins: Biology and Ecology. Oxford: Academic Press, pp. 95145. https://doi.org/10.1016/B978-0-12-819570-3.00007-XGoogle Scholar
Ebert, TA and Russell, MP (1993) Growth and mortality of subtidal red sea urchins (Strongylocentrotus franciscanus) at San Nicolas Island, California, USA: problems with models. Marine Biology, 117, 7989.CrossRefGoogle Scholar
Ebert, TA and Russell, MP (1994) Allometry and model II non-linear regression. Journal of Theoretical Biology, 168, 367372.CrossRefGoogle Scholar
Ebert, TA and Southon, JR (2003) Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14 carbon. Fisheries Bulletin 101, 915922.Google Scholar
Ebert, TA, Dixon, JD, Schroeter, SC, Kalvass, PE, Richmond, NT, Bradbury, WA and Woodby, DA (1999) Growth and mortality of red sea urchins Strongylocentrotus franciscanus across a latitudinal gradient. Marine Ecology Progress Series, 190, 189209.Google Scholar
Ebert, TA, Russell, MP, Gamba, G and Bodnar, A (2008) Growth, survival and longevity estimates for the rock-boring sea urchin Echinometra lucunter lucunter (Echinodermata. Echinoidea) in Bermuda. Bulletin of Marine Science 82, 381403.Google Scholar
Ellers, O and Johnson, AS (2009) Polyfluorochrome marking slows growth only during the marking month in the green sea urchin Strongylocentrotus droebachiensis. Invertebrate Biology, 128, 126144.Google Scholar
Ellers, O, Johnson, AS and Moberg, PE (1998) Structural strengthening of urchin skeletons by collagenous sutural ligaments. The Biological Bulletin, 195, 136144.CrossRefGoogle ScholarPubMed
Escolar, M (2010). Variaciones espacio-temporales en la comunidad de invertebrados bentónicos asociada al frente de talud. Equinodermos como caso de estudio (Doctoral Dissertation). Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Argentina.Google Scholar
Gage, JD (1991) Skeletal growth zones as age-markers in the sea urchin Psammechinus miliaris. Marine Biology, 110, 217228.CrossRefGoogle Scholar
Gage, JD (1992) Natural growth bands and growth variability in the sea urchin Echinus esculentus: results from tetracycline tagging. Marine Biology, 114, 607616.CrossRefGoogle Scholar
Gil, DG (2015) Biología y ecología del erizo de mar Pseudechinus magellanicus (Echinoidea: Temnopleuridae) en Patagonia Central (PhD Dissertation). Universidad Nacional de la Plata, Argentina.Google Scholar
Gil, DG, Lopretto, EC and Zaixso, HE (2020) Reproductive timing and synchronized reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) in central Patagonia, Argentina. Marine Biology Research, 16, 311326.CrossRefGoogle Scholar
Gil, DG, Boraso, AL, Lopretto, EC and Zaixso, HE (2021) Depth-related plasticity in the diet composition of Pseudechinus magellanicus (Echinoidea, Temnopleuridae) in nearshore environments off central Patagonia, Argentina. Aquatic Ecology, 55, 589606.CrossRefGoogle Scholar
Haag, WR (2009) Extreme longevity in freshwater mussels revisited: sources of bias in age estimates derived from mark-recapture experiments. Freshwater Biology, 54, 14741486.CrossRefGoogle Scholar
Haag, N, Russell, MP, Hernández, JC and Dollahon, N (2013) Assessing fluorochrome-staining efficacy in the green sea urchin Strongylocentrotus droebachiensis (Müller, 1776). Cahiers Biologie Marine 54, 625631.Google Scholar
Johnson, AS, Salyers, JM, Alcorn, NJ, Ellers, O and Allen, JD (2013) Externally visible fluorochrome marks and allometries of growing sea urchins. Invertebrate Biology, 132, 251269.CrossRefGoogle Scholar
Kirby, S, Lamare, MD and Barker, MF (2006) Growth and morphometrics in the New Zealand sea urchin Pseudechinus huttoni (Echinoidea: Temnopleuridae). New Zealand Journal of Marine and Freshwater Research, 40, 413428.CrossRefGoogle Scholar
Klinger, TS, McCarthy, BM and Lawrence, JM (1983) The effects of food quantity and quality upon somatic and gonadal growth of Lytechinus variegatus Lamarck (Echinodermata: Echinoidea). The American Zoologist 23, 264.Google Scholar
Kroh, A and Mooi, R (2023) World Echinoidea Database. Pseudechinus Mortensen, 1903. Accessed through: World Register of Marine Species at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=160753 on 2023-06-13.Google Scholar
Lamare, MD and Mladenov, PV (2000) Modelling somatic growth in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae). Journal of Experimental Marine Biology and Ecology, 243, 1743.CrossRefGoogle Scholar
Larrain, AP (1975) Los equinoideos regulares fósiles y recientes de Chile. Gayana, Zoología 35, 1189.Google Scholar
Lau, DC, Dumont, CP, Lui, G and Qiu, JW (2011) Effectiveness of a small marine reserve in southern China in protecting the harvested sea urchin Anthocidaris crassispina: a mark-and-recapture study. Biological Conservation, 144, 26742683.CrossRefGoogle Scholar
Lawrence, JM (2020) Sea Urchins: Biology and Ecology. Cambridge: Academic press.Google Scholar
Lawrence, JM and Lane, JM (1982) The utilization of nutrients by post-metamorphic echinoderms. In Jangoux, M, Lawrence, JM (eds), Echinoderm Nutrition. Rotterdam: AA Balkema, pp. 331371. https://doi.org/10.1201/9781003078920-18Google Scholar
Marzinelli, EM, Bigatti, G, Giménez, J and Penchaszadeh, PE (2006) Reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) from Golfo Nuevo, Argentina. Bulletin of Marine Science 79, 127136.Google Scholar
Molinet, C, Balboa, CA, Moreno, CA, Diaz, M, Gebauer, P, Niklitschek, EJ and Barahona, N (2013) Variability in the growth patterns of Loxechinus albus along a bathymetric gradient associated with a fishing ground. Bulletin of Marine Science, 89, 699716.Google Scholar
Mortensen, T (1910) The Echinoidea of the Swedish South Polar Expedition, vol. 6. Stockholm, Sweden: Lithographisches Institut des Generalstabs.CrossRefGoogle Scholar
Munro, JL and Pauly, D (1983) A simple method for comparing the growth of fishes and invertebrates. Fishbyte 1, 56.Google Scholar
Orler, PM (1992) Biología reproductiva comparada de Pseudechinus magellanicus y Loxechinus albus, equinoideos del Canal Beagle (PhD Thesis). Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, Argentina.Google Scholar
Ouréns, R, Flores, L, Fernández, L and Freire, J (2013) Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). Journal of Sea Research, 76, 5060.CrossRefGoogle Scholar
Pawson, DL (1966) The Echinoidea collected by the Royal Society of London expedition to southern Chile, 1958–1959. Pacific Science 20, 206211.Google Scholar
Pecorino, D, Lamare, MD and Barker, MF (2012) Growth, morphometrics and size structure of the Diadematidae sea urchin Centrostephanus rodgersii in northern New Zealand. Marine and Freshwater Research, 63, 624634.CrossRefGoogle Scholar
Pederson, HG and Johnson, CR (2008) Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania. ICES Journal of Marine Science, 65, 111.CrossRefGoogle Scholar
Penchaszadeh, PE, Bigatti, G and Miloslavich, P (2004) Feeding of Pseudechinus magellanicus (Philippi, 1857) (Echinoidea: Temnopleuridae) in the SW Atlantic coast (Argentina). Ophelia, 58, 9199.CrossRefGoogle Scholar
Pierrat, B, Saucède, T, Festeau, A and David, B (2012) Antarctic, sub-Antarctic and cold temperate echinoid database. ZooKeys, 204, 4752.Google Scholar
Raymond, BG and Scheibling, RE (1987) Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Muller) following mass mortality off Nova Scotia, Canada. Journal of Experimental Marine Biology and Ecology, 108, 3154.Google Scholar
Ríos, C, Mutschke, E and Cariceo, Y (2003) Estructura poblacional de Pseudechinus magellanicus (Philippi 1857) (Echinoidea: Temnopleuridae) en grampones de la macroalga sublitoral Macrocystis pyrifera (L.) C. Agardh en el Estrecho de Magallanes, Chile. Anales del Instituto de la Patagonia 31, 7586.Google Scholar
Rogers-Bennett, LD, Rogers, DW, Bennett, WA and Ebert, TA (2003) Modeling red sea urchin growth using six growth functions. Fisheries Bulletin 101, 614626.Google Scholar
Roux, A, Piñero, R, Moriondo, P and Fernández, M (2009) Diet of the red shrimp Pleoticus muelleri (Bate, 1888) in Patagonian fishing grounds, Argentine. Revista de Biología Marina y Oceanografía, 44, 775781.CrossRefGoogle Scholar
Rowley, RJ and Mackinnon, DL (1995) Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bulletin de l'Institut Océanographique de Monaco 14, 111120.Google Scholar
Russell, MP (1987) Life history traits and resource allocation in the purple sea urchin Strongylocentrotus purpuratus (Stimpson). Journal of Experimental Marine Biology and Ecology, 108, 199216.CrossRefGoogle Scholar
Russell, MP and Meredith, RW (2000) Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using Strongylocentrotus droebachiensis. Invertebrate Biology, 119, 410420.CrossRefGoogle Scholar
Russell, MP and Urbaniak, LM (2004) Does calcein affect estimates of growth rates in sea urchins? In Heinzeller, T, Nebelsick, J (eds), Echinoderms: München. London: Taylor and Francis, pp. 5357. https://doi.org/10.1201/9780203970881.ch10Google Scholar
Russell, MP, Ebert, TA and Petraitis, PS (1998) Field estimates of growth and mortality of the green sea urchin, Strongylocentrotus droebachiensis. Ophelia, 48, 137153.CrossRefGoogle Scholar
Schuhbauer, A, Brickle, P and Arkhipkin, A (2010) Growth and reproduction of Loxechinus albus (Echinodermata: Echinoidea) at the southerly peripheries of their species range. Falkland Islands (South Atlantic). Marine Biology, 157, 18371847.Google Scholar
Tourón, N, Campos, S, Costas, D and Paredes, E (2023) Marking methodologies for sea urchins: a review. Journal of Shellfish Research, 42, 155175.CrossRefGoogle Scholar
Turon, X, Giribert, G, López, S and Palacín, C (1995) Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Marine Ecology Progress Series, 122, 193204.CrossRefGoogle Scholar
Uthicke, S, Schaffelke, B and Byrne, M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecological Monographs, 79, 324.CrossRefGoogle Scholar
Vásquez, JA and Buschmann, AH (1997) Herbivore–kelp interactions in Chilean subtidal communities: a review. Revista Chilena de Historial Natural 70, 4152.Google Scholar
Verberk, WC, Atkinson, D, Hoefnagel, KN, Hirst, AG, Horne, CR and Siepel, H (2021) Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biological Reviews, 96, 247268.CrossRefGoogle ScholarPubMed
Verga, RN, Tolosano, JA, Cazzaniga, NJ and Gil, DG (2020) Assessment of seawater quality and bacteriological pollution of rocky shores in the central coast of San Jorge Gulf (Patagonia, Argentina). Marine Pollution Bulletin 150, 110749.Google Scholar
Vinuesa, JH, Varisco, MA and Balzi, P (2013) Feeding strategy of early juvenile stages of the southern king crab Lithodes santolla in the San Jorge Gulf, Argentina. Revista de Biología Marina y Oceanografía 48, 353363.Google Scholar
Walford, LA (1946) A new graphic method of describing the growth of animals. The Biological Bulletin, 90, 141147.Google Scholar
Zaixso, HE, Boraso, AL, Pastor, CT, Lizarralde, ZI, Dadon, JR and Galván, DE (2015) El bentos costero Patagónico. In Zaixso, HE, Boraso, A (eds), La Zona Costera Patagónica Argentina. Comodoro Rivadavia: EDUPA, pp. 43152.Google Scholar
Supplementary material: File

Gil and Zaixso supplementary material

Gil and Zaixso supplementary material
Download Gil and Zaixso supplementary material(File)
File 363.8 KB