Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-07T14:57:31.328Z Has data issue: false hasContentIssue false

The functional morphology of Otina otis, a primitive marine pulmonate

Published online by Cambridge University Press:  11 May 2009

J. E. Morton
Affiliation:
Department of Zoology, Queen Mary College, University of London

Extract

The family Otinidae is the smallest and probably the least known among the pulmonates. Thiele (1931) places it at the base of the Basommatophora, the more primitive order of the subclass Pulmonata, in the Stirps Actophila. It contains a single species, Otina otis Turton, with a geographical range confined to the coasts of the British Isles and north-west France. Its northern distribution reaches as far as the Firth of Clyde, according to Jeffreys (1869), and over the greater part of its British range it appears to follow fairly closely the distribution of the barnacle Chthamalus stellatus, which here reaches its northern limit. Otina otis is a tiny snail, and its external form is limpet-like. The shell, which is well described by Jeffreys (1869), and also by Ellis (1926), measures up to 2*5 mm in length, with a short apical visceral coil at the posterior end. It is dark chestnut brown in colour, and most resembles a minute Haliotis.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bargmann, Helene E., 1930. The morphology of the central nervous system in the Gastropoda Pulmonata. J. Linn. Soc. (Zool.), Vol. 37, pp. 159.Google Scholar
Borland, , Constance, , 1950. An ecological study of Benhamina obliquata (Sowerby), a basommatophorous pulmonate, in Otago Harbour. Trans, roy. Soc. N.Z., Vol. 78, pp. 385–93.Google Scholar
Carriker, M. R., 1946. Observations on the functioning of the alimentary system of the snail, Lymnaea stagnalis appressa Say. Biol. Bull., Woods Hole, Vol. 91, p. 88.Google Scholar
Ellis, A. E., 1926. British Snails. Oxford University Press.Google Scholar
Forrest, J. E., 1951. Feeding mechanisms in dorid nudibranchiate Mollusca. Contribution, Section D, Brit. Ass. Adv. Sci., 1951.Google Scholar
Fretter, , Vera, , 1943. Studies in the functional morphology and embryology of Oncidiella celtica (F. & H.) and their bearing on its relationships. J. Mar. biol. Ass. U.K., Vol. 25, pp. 685720.CrossRefGoogle Scholar
Fretter, , Vera, , 1948. The structure and life history of some minute prosobranchs of rock pools: Skeneopsis planorbis (Fabricus), Omalogyra atomus (Phillipi), Rissoella diaphana (Alder) and Rissoella opalina (Jeffreys). J. Mar. biol. Ass. U.K., Vol. 27, pp. 597632.Google Scholar
Fretter, , Vera, & Graham, A., 1949. The structure and mode of life of the Pyramidellidae, parasitic opisthobranchs. J. Mar. biol. Ass. U.K., Vol. 28, pp. 493532.Google Scholar
Graham, A., 1949. The molluscan stomach. Trans, roy. Soc. Edinb., Vol. 61, pp. 737–78CrossRefGoogle Scholar
Guiart, J., 1901. Contribution a l'étude des Gastéropodes opisthobranches et en particulier des Céphalaspides. Mém. Soc. zool. Fr., T. 14, p. 5219.Google Scholar
Harry, H. W., 1951. Growth changes in the shell of Pythia scarabaeus (Linné). Proc. Calif. zool. Cl., Vol. 2 (2), 14 pp.Google Scholar
Hubendick, B., 1945. Phylogenie und Tiergeographie der Siphonariidae. Zur Kentniss der Phylogenie in der Ordnung Basommatophora und der Ursprungs der Pulmonatengruppe. Zool. Bidr. Uppsala, Bd. 24, pp. 1216.Google Scholar
Jeffreys, J. G., 1869. British Conchology. Vol. 5, 258 pp. London.Google Scholar
Millott, N., 1937. On the morphology of the alimentary canal, process of feeding and physiology of digestion of the nudibranchiate mollusc, Jorunna tormentosa (Cuvier). Phil. Trans. B, Vol. 228, pp. 173217.Google Scholar
Morton, J. E., 1951. The ecology and digestive system of the Struthiolariidae. Quart. J. micr. Sci., Vol. 92, pp. 126.Google Scholar
Morton, J. E., 1952a. The role of the crystalline style. Proc. malacol. Soc. Lond., Vol. 29, pp. 8592.Google Scholar
Morton, J. E., 1952b. A preliminary study of the land operculate Murdochia pallidum (Mesogastropoda, Cyclophoridae). Trans, roy. Soc. N.Z., Vol. 80, pp. 6979.Google Scholar
Morton, J. E., 1954. The crevice faunas of the upper intertidal zone at Wembury. J. Mar. biol. Ass. U.K., Vol. 33, pp. 187224.Google Scholar
Morton, J. E., 1955a. The functional morphology of the British Ellobiidae (Gastropoda Pulmonata) with special reference to the digestive and reproductive systems. (In the Press.)Google Scholar
Morton, J. E., 1955b. The evolution of the Ellobiidae, with a discussion on the origin of the Pulmonata. Proc. zool. Soc. Lond. (in the Press).Google Scholar
Pantin, C. F. A., 1946. Notes on Microscopical Technique for Zoologists. Cambridge University Press.Google Scholar
Pelseneer, P., 1901. Études sur des Gastéropodes Pulmonées. Mém. Acad. R. Belg. Cl. Sci., T. 54, p. 1.Google Scholar
Station Biologique de Roscoff, 1951. Inventaire de la Faune Marine de Roscoff. Molusques. Trav. Sta. biol. Roscoff, Suppl. 5, 80 pp.Google Scholar
Thiele, J., 1931. Handbuch der Systematischen Weichtierkunde. 12. Jena.Google Scholar
Yonge, C. M., 1926. The structure and physiology of the organs of feeding and digestion in Ostraea edulis. J. Mar. biol. Ass. U.K., Vol. 14, pp. 295386.CrossRefGoogle Scholar
Yonge, C. M., 1939. The protobranchiate Mollusca: a functional interpretation of their structure and evolution. Phil. Trans., B, Vol. 230, pp. 79148.Google Scholar
Yonge, C. M., 1952. The mantle cavity in Siphonaria alternata Say. Proc. malacol. Soc. Lond., Vol. 29, pp. 190199.Google Scholar
Zittel, K. A. Von, 1923. Grandzuge der Palaontologie I. Invertebrata. Munich and Berlin.Google Scholar