Skip to main content Accessibility help
×
Home

Effects on larval metamorphosis in the mussel Mytilus coruscus of compounds that act on downstream effectors of G-protein-coupled receptors

  • Xiao Liang (a1), Yu-Ru Chen (a1), Wei Gao (a1), Xing-Pan Guo (a1), De-Wen Ding (a2), Asami Yoshida (a3), Kiyoshi Osatomi (a3) and Jin-Long Yang (a1) (a2)...

Abstract

The metamorphic responses of mussel (Mytilus coruscus) larvae to pharmacological agents affecting G proteins and the adenylate cyclase/cyclic AMP (AC/cAMP) pathway were examined in the laboratory. The G protein activators guanosine 5′-[β,γ-imido]triphosphate trisodium salt hydrate and guanosine 5′-[γ-thio]triphosphate tetralithium salt only induced larval metamorphosis in continuous exposure assays, and the G protein inhibitor guanosine 5′-[β-thio]diphosphate trilithium salt did not exhibit inducing activity. The non-specific phosphodiesterase inhibitor theophylline and the cAMP-specific phosphodiesterase IV inhibitor 4-(3-Butoxy-4-methoxybenzyl)imidazolidin-2-one exhibited inducing activity, while the non-specific phosphodiesterase inhibitor 3-Isobutyl-1-methylxanthine only showed inducing activity at 10−4 M in continuous exposure assays. The cyclic nucleotide analogue N6,2′-O-Dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt did not exhibit significant inducing activity. Both the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor nitroimidazole exhibited inducing activity at 10−4 to 10−3 M concentrations in continuous exposure assays. Among these tested agents, the adenylate cyclase inhibitor (±)-miconazole nitrate salt showed the most promising inducing effect. The present results indicate that G protein-coupled receptors and signal transduction by AC/cAMP pathway could mediate metamorphosis of larvae in this species.

Copyright

Corresponding author

Correspondence should be addressed to: J.L. Yang, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China email: jlyang@shou.edu.cn

Footnotes

Hide All
*

These authors contributed equally.

Footnotes

References

Hide All
Alfaro, A.C., Young, T. and Ganesan, A.M. (2011) Regulatory effects of mussel (Aulacomya maoriana Iredale 1915) larval settlement by neuroactive compounds, amino acids and bacterial biofilms. Aquaculture 322–323, 158168.
Amador-Cano, G., Carpizo-Ituarte, E. and Cristino-Jorge, D. (2006) Role of protein Kinase C, G-Protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus . Biological Bulletin 210, 121131.
Bao, W.Y., Yang, J.L., Satuito, C.G. and Kitamura, H. (2007) Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: evidence for two chemical cues? Marine Biology 152, 657666.
Baxter, G. and Morse, D.E. (1987) G protein and diacylglycerol regulate metamorphosis of planktonic molluscan larvae. Proceedings of the National Academy of Sciences USA 84, 18671870.
Biggers, W.J. and Laufer, H. (1999) Settlement and metamorphosis of Capitella larvae induced by juvenile hormone-active compounds is mediated by protein Kinase C and ion channels. Biological Bulletin 196, 187198.
Cai, R.X., Chen, S.Q., Xue, J.Z. and Lu, J.P. (1994) The ecology of fouling organism in Gouqi waters, Zhoushan. Donghai Marine Science 12, 4456. [In Chinese with English Abstract]
Chang, K.M., Liu, H.H., Li, J.L. and Shen, Y.B. (2008) A primary study on hybridization of Mytilus galloprovincialis, Mytilus coruscus, heterosis of F1 generation. Journal of Fisheries of China 32, 552557. [in Chinese with English Abstract]
Clare, A.S. (2011) Toward a characterization of the chemical cue to barnacle gregariousness. In Breithaupt, T. and Thiel, M. (eds) Chemical communication in crustaceans. New York, NY: Springer, pp. 431450.
Clare, A.S., Thomas, R.F. and Rittschof, D. (1995) Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. Journal of Experimental Biology 198, 655664.
Conzelmann, M., Williams, E.A., Tunaru, S., Randel, N., Shahidi, R., Asadulina, A., Berger, J., Offermanns, S. and Jékely, G. (2013) Conserved MIP receptor–ligand pair regulates Platynereis larval settlement. Proceedings of the National Academy of Sciences USA 110, 82248229.
Coon, S.L. and Bonar, D.B. (1987) Pharmacological evidence that alphal-adrenoceptors mediate metamorphosis of the Pacific oyster, Crassostrea gigas . Neuroscience 23, 11691174.
Crisp, D.J. (1974) Factors influencing the settlement of marine invertebrate larvae. In Mackie, P.G. (ed.) Chemoreception in marine organisms. London: Academic Press, pp. 177265.
Dobretsov, S.V. and Qian, P.Y. (2003) Pharmacological induction of larval settlement and metamorphosis in the blue mussel Mytilus edulis L . Biofouling 19, 5763.
Dreanno, C., Matsumura, K., Dohmae, N., Takio, K., Hirota, H., Kirby, R.R. and Clare, A.S. (2006) An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite . Proceedings of the National Academy of Sciences USA 103, 1439614401.
Ganesan, A.M., Alfaro, A.C., Brooks, J.D. and Higgins, C.M. (2010) The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae. Aquaculture 306, 388392.
Hadfield, M.G. (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annual Review of Marine Science 3, 453470.
Hadfield, M.G. and Paul, V.G. (2001) Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In McClintock, J.B. and Baker, J.B. (eds) Marine chemical ecology. Boca Raton, FL: CRC Press, pp. 431460.
Hay, M.E. (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annual Review of Marine Science 1, 193212.
Holm, E.R., Nedved, B.T., Carpizo-Ituarte, E. and Hadfield, M.G. (1998) Metamorphic-signal transduction in Hydroides elegans (Polychaeta: Serpulidae) is not mediated by a G protein. Biological Bulletin 195, 2129.
Huggett, M.J., de Nys, R., Williamson, J.E., Heasman, M. and Steinberg, P.D. (2005) Settlement of larval blacklip abalone, Haliotis rubra, in response to green and red macroalgae. Marine Biology 147, 11551163.
Jensen, R.A. and Morse, D.E. (1990) Chemically induced metamorphosis of polychaete larvae in both the laboratory and ocean environment. Journal of Chemical Ecology 16, 911930.
Leitz, T. (1997) Induction of settlement and metamorphosis of Cnidarian larvae: signals and signal transduction. Invertebrate Reproduction and Development 31, 109122.
Leitz, T. and Müller, W.A. (1987) Evidence for the involvement of PI-signaling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid Hydractinia echinata Fleming. Developmental Biology 121, 8289.
Morse, D.E. (1990) Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bulletin of Marine Science 46, 465483.
Müller, W.A. (1985) Tumor-promoting phorbol esters induce metamorphosis and multiple head formation in the hydroid Hydractinia . Differentiation 29, 216222.
Paul, V.J., Ritson-Williams, R. and Sharp, K. (2011) Marine chemical ecology in benthic environments. Natural Product Reports 28, 345387.
Pawlik, J.R. (1986) Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta). Marine Biology 91, 5968.
Pawlik, J.R. (1990) Natural and artificial induction of metamorphosis of Phragmatopoma lapidosa californica (Polychaeta: Sabellariidae), with a critical look at the effects of bioactive compounds on marine invertebrate larvae. Bulletin of Marine Science 46, 512536.
Pawlik, J.R. (1992) Chemical ecology of the settlement benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review 30, 273335.
Rittschof, D., Maki, J., Mitchell, R. and Costlow, J.D. (1986) Ion and neuropharmacological studies of barnacle settlement. Netherlands Journal of Sea Research 20, 269275.
Rittschof, D., Lai, C.H., Kok, L.M. and Teo, S.L.M. (2003) Pharmaceuticals as antifoulants: concept and principles. Biofouling 19, 207212.
Sánchez-Lazo, C., Martínez-Pita, I., Young, T. and Alfaro, A.C. (2012) Induction of settlement in larvae of the mussel Mytilus galloprovincialis using neuroactive compounds. Aquaculture 344–349, 210215.
Satuito, C.G., Natoyama, K., Yamazaki, M., Shimizu, K. and Fusetani, N. (1999) Induction of metamorphosis in the pediveliger larvae of the mussel Mytilus galloprovincialis by neuroactive compounds. Fisheries Science 65, 384389.
Schneider, T. and Leitz, T. (1994) Protein kinase C in hydrozoans: involvement in metamorphosis of Hydractinia and in pattern formation of Hydra . Roux's Archives of Developmental Biology 203, 422428.
Tebben, J., Tapiolas, D.M., Motti, C.A., Abrego, D., Negri, A.P., Blackall, L.L., Steinberg, P.D. and Harder, T. (2011) Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, e19082. Available at http://dx.doi.org/10.1371/journal.pone.0019082.
Tran, C. and Hadfield, M.G. (2012) Are G-protein-coupled receptors involved in mediating larval settlement and metamorphosis of coral planulae? Biological Bulletin 222, 128136.
Walters, L.J., Hadfield, M.G. and Smith, C.M. (1996) Waterborne chemical compounds in tropical macroalgae: positive and negative cues for larval settlement. Marine Biology 126, 383393.
Wang, C., Bao, W.Y., Gu, Z.Q., Li, Y.F., Liang, X., Ling, Y., Cai, S.L., Shen, H.D. and Yang, J.L. (2012) Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling 28, 249256.
Yamamoto, H., Tachibana, A., Kawaii, S., Matsumura, K. and Fusetani, N. (1996) Serotonin involvement in larval settlement of the barnacle, Balanus amphitrite . Journal of Experimental Zoology 275, 339345.
Yamamoto, H., Tachibana, A., Matsumura, K. and Fusetani, N. (1995) Protein kinase C (PKC) signal transduction system involved in larval metamorphosis of the barnacle, Balanus amphitrite . Zoological Science 12, 391396.
Yang, J.L., Satuito, C.G., Bao, W.Y. and Kitamura, H. (2007) Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Marine Biology 152, 11211132.
Yang, J.L., Satuito, C.G., Bao, W.Y. and Kitamura, H. (2008) Induction of metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis Lamarck, 1819 using neuroactive compounds, KCl, NH4Cl and organic solvents. Biofouling 24, 461470.
Yang, J.L., Shen, P.J., Liang, X., Li, Y.F., Bao, W.Y. and Li, J.L. (2013a) Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29, 247259.
Yang, J.L., Li, S.H., Li, Y.F., Liu, Z.W., Liang, X., Bao, W.Y. and Li, J.L. (2013b) Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus . Aquaculture 396–399, 106112.
Yang, J.L., Li, Y.F., Satuito, C.G., Bao, W.Y. and Kitamura, H. (2011) Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium. Biofouling 27, 193199.
Yang, J.L., Li, W.S., Liang, X., Li, Y.F., Chen, Y.R., Bao, W.Y. and Li, J.L. (2014) Effects of adrenoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus . Aquaculture 426–427, 282287.
Yang, J.L., Li, S.H., Bao, W.Y., Yamada, H. and Kitamura, H. (2015) Effect of different ions on larval metamorphosis of the mussel Mytilus galloprovincialis . Aquaculture Research 46, 155162.
Young, T., Alfaro, A.C. and Robertson, J. (2011) Effect of neuroactive compounds on the settlement of mussel (Perna canaliculus). Aquaculture 319, 277283.
Young, T., Alfaro, A.C., Sánchez-Lazo, C. and Robertson, J. (2015) Putative involvement of adrenergic receptors in regulation of mussel (Perna canaliculus) larval settlement. Marine Biology Research 11, 655665.
Yvin, J.C., Chevolot, L., Chevolot-Magueur, A.M. and Cochard, J.C. (1985) First isolation of jacaraone from an alga, Delesseria sanguinea. A metamorphosis inducer of pectin larvae. Journal of Natural Products 48, 814816.

Keywords

Effects on larval metamorphosis in the mussel Mytilus coruscus of compounds that act on downstream effectors of G-protein-coupled receptors

  • Xiao Liang (a1), Yu-Ru Chen (a1), Wei Gao (a1), Xing-Pan Guo (a1), De-Wen Ding (a2), Asami Yoshida (a3), Kiyoshi Osatomi (a3) and Jin-Long Yang (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed