Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T01:38:16.618Z Has data issue: false hasContentIssue false

Effects of Changes in Oxygen and Carbon Dioxide Concentrations on Ventilation Rhythms in Onuphid Polychaetes

Published online by Cambridge University Press:  11 May 2009

R. Phillips Dales
Affiliation:
Bedford College, University of London, N.W. I, and College of William and Mary, Williamsburg, Virginia 23185, U.S.A.
Charlotte P. Mangum
Affiliation:
Bedford College, University of London, N.W. I, and College of William and Mary, Williamsburg, Virginia 23185, U.S.A.
Joseph C. Tichy
Affiliation:
Bedford College, University of London, N.W. I, and College of William and Mary, Williamsburg, Virginia 23185, U.S.A.

Extract

Spontaneous rhythmic activity in the lugworm Arenicola marina (L.) is believed to be under control of a pacemaker located in the ventral nerve cord and oesophageal plexus (Wells, 1937). Since the rhythmic component which often dominates the spontaneous behaviour of polychaete worms consists of movements resulting in irrigation of the tube or burrow, and thus ventilation of respiratory surfaces, pacemaker control of the rhythm differs strikingly from reflex control of ventilation in other animals.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dam, L. Van, 1938. On the Utilization of Oxygen and the Regulation of Breathing in some Aquatic Animals. 143 pp. Groningen.Google Scholar
Green, E. J. & Carritt, D. E., 1967. New tables for oxygen saturation of sea water. J. mar. Res., Vol. 25, pp. 140–7.Google Scholar
Lindroth, A., 1938. Studien über die respiratorischen Mechanismen von Nereis virens Sars. Zool. Bidr. Upps., Vol. 17, pp. 367497.Google Scholar
Mangum, C. P., 1964. Activity patterns in metabolism and ecology of polychaetes. Comp. Biochem. Physiol., Vol. II, pp. 239–56.Google Scholar
Mangum, C. P., Santos, S. L. & Rhodes, W. R., 1968. Distribution and feeding in the onuphid polychaete Diopatra cuprea (Bosc). Mar. Biol., Vol. 2, pp. 3340.Google Scholar
Mangum, C. P. & Sassaman, C., 1969. Temperature sensitivity of active and resting metabolism in a polychaetous annelid. Comp. Biochem. Physiol., Vol. 30, pp. 111–16.CrossRefGoogle Scholar
Pautard, F. G. & Zola, H., 1966. Studies of onuphid acid. I. Extraction and general characterisation. Carbohydrate Res., Vol. 3, pp. 5868.Google Scholar
Pautard, F. G. & Zola, H., 1967a. Studies of onuphic acid. II. The phosphorus and monosaccharide components. Carbohydrate Res., Vol. 3, pp. 271–82.CrossRefGoogle Scholar
Pautard, F. G. & Zola, H., 1967b. Studies of onuphic acid. III. Principal structural features. Carbohydrate Res., Vol. 4, pp. 7881.CrossRefGoogle Scholar
Pautard, F. G. & Zola, H., 1967c. The location of onuphic acid in Hyalinoecia tubicola. J. Histochem. Cytochem., Vol. 15, pp. 737–44.Google Scholar
Watson, A., 1903. Observations on the habits of the Onuphidae (Polychaeta) and on the internal structures with which they fortify their homes. Proc. Trans. Lpool biol. Soc., Vol. 17, pp. 303–18.Google Scholar
Wells, G. P., 1937. Studies on the physiology of Arenicola marina L. I. The pacemaker role of the oesophagus, and the action of adrenaline and acetylcholine. J. exp. Biol., Vol. 14, pp. 117–57.CrossRefGoogle Scholar
Wells, G. P., 1949. Respiratory movements of Arenicola marina L.: intermittent irrigation of the tube and intermittent aerial respiration. J. mar. biol. Ass. U.K., Vol. 28, pp. 447–64.CrossRefGoogle Scholar
Wells, G. P., 1950. Spontaneous activity cycles in polychaete worms. Symp. Soc. exp. Biol., IV, pp. 127–42.Google Scholar
Wells, G. P. & Dales, R. P., 1951. Spontaneous activity patterns in animal behaviour: the irrigation of the burrow in the polychaetes Chaetopterus variopedatus Renier and Nereis diversicolor O. F. Müller. J. mar. biol. Ass. U.K., Vol. 29, pp. 661–80.Google Scholar
Wells, G. P. & Ledingham, I. C., 1940a. Physiological effects of a hypotonic environment. I. The action of hypotonic salines on isolated rhythmic preparations from polychaete worms (Arenicola marina, Nereis diversicolor, Perinereis cultrifera). J. exp. Biol., Vol. 17, pp. 337–52.CrossRefGoogle Scholar
Wells, G. P. & Ledingham, I. C., 1940b. Studies on the physiology of Arenicola marina L. II. Accommodation to magnesium concentration in the isolated extrovert. J. exp. Biol., Vol. 17, pp. 353–63.Google Scholar
Zola, H., 1967. Sugar phosphate polymers in polychaete tubes and in mineralized animal tissues. Comp. Biochem. Physiol., Vol. 21, pp. 179–83.Google Scholar