Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T05:54:14.271Z Has data issue: false hasContentIssue false

Diversity of the sponge fauna associated with white coral banks from two Sardinian canyons (Mediterranean Sea)

Published online by Cambridge University Press:  12 November 2019

M. Bertolino*
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
S. Ricci
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
S. Canese
Affiliation:
Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
A. Cau
Affiliation:
Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università degli Studi di Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy
G. Bavestrello
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
M. Pansini
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
M. Bo
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
*
Author for correspondence: M. Bertolino, E-mail: marco.bertolino@edu.unige.it

Abstract

The three-dimensional coral scaffolds formed by the skeletons of the cold-water corals Madrepora oculata and Lophelia pertusa represent an important deep-sea hard substratum and create an optimal shelter for a rich associated fauna in which the contribution of Porifera has still not been fully considered. The taxonomic analysis of sponges collected from two Sardinian canyons (Nora and Coda Cavallo, 256–408 m) and associated with the dead coral matrix resulted in 28 species, including new records for the Mediterranean Sea, Italian fauna or Central Tyrrhenian Sea. In addition, for many species this is the first finding associated with the coral framework or the first documentation of the in situ morphology. The taxonomic comparison with sponge assemblages associated with coral frameworks from Santa Maria di Leuca, Strait of Sicily and Bari Canyon, gave the opportunity to evaluate the similarities among geographically separated banks. Overall, the percentage of exclusive species (recorded only in one site), is very high (81%) and only one species is shared by all four sites, suggesting a low connectivity among the sponge communities. The percentage of shared species is higher for the Maltese community, supporting the role of the Sicily Channel as a crossroads between the communities of the eastern and western Mediterranean basins. Here, 55% of the sponges associated to the coral framework are also reported in shallow-water coralligenous assemblages, indicating a high bathymetric connectivity as well as an ecological plasticity allowing these species to occupy a wide range of small, dark refuges.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Pérez, G, Busquets, P, De Mol, B, Sandoval, NG, Canals, M and Casamor, JL (2005) Deep-water coral occurrences in the Strait of Gibraltar. In Freiwald, A & Roberts, JM (eds), Cold-water Corals and Ecosystems. Berlin: Springer, pp. 207221.Google Scholar
Angeletti, L, Taviani, M, Canese, S, Foglini, F, Mastrototaro, F, Argnani, A and Macic, V (2014) New deep-water cnidarian sites in the southern Adriatic Sea. Mediterranean Marine Science 2, 263273.Google Scholar
Bertolino, M, Cerrano, C, Bavestrello, G, Carella, M, Pansini, M and Calcinai, B (2013) Diversity of Porifera in the Mediterranean coralligenous accretions, with description of a new species. ZooKeys 336, 137.Google Scholar
Bianchi, CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580, 7.Google Scholar
Bianchi, CN and Morri, C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Marine Pollution Bulletin 40, 367376.Google Scholar
Bourcier, M and Zibrowius, H (1973) Les «boues rouges» déversées dans le canyon de la Cassidaigne (région de Marseille). Observations en soucoupe plongeante SP 350 (juin 1971) et résultats de dragages. Tethys 4, 811842.Google Scholar
Boury-Esnault, N, Pansini, M and Uriz, MJ (1994) Spongiaires bathyaux de la mer d'Alboran et du golfe ibéro-marocain. Mémoires du Muséum national d'Histoire naturelle 160, 1174.Google Scholar
Brøndsted, HV (1932) Marine Spongia. III. In Jensen, AS, Lundbeck, W and Ragnar Sparck, MT (eds), The Zoology of the Faroes, vol. 1 Copenhagen: AF. Høst & Son, pp. 134.Google Scholar
Buhl-Mortensen, L, Vanreusel, A, Gooday, A, Levin, LA, Priede, IG, Buhl-Mortensen, P, Gheerardyn, H, King, NJ and Raes, M (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31, 2150.Google Scholar
Calcinai, B, Moratti, V, Martinelli, M, Bavestrello, G and Taviani, M (2013) Uncommon sponges associated with deep coral bank and maerl habitats in the Strait of Sicily (Mediterranean Sea). Italian Journal of Zoology 80, 412423.Google Scholar
Cardone, F, Pansini, M, Corriero, G and Bertolino, M (2019) Two new species of deep-sea sponges (Porifera, Demospongiae) from submarine canyons of the Sardinian continental margin (western Mediterranean Sea). Zootaxa 4688, 407419.Google Scholar
Connell, JH (1978) Diversity in tropical rain forests and coral reefs. Science 199, 13021310.Google Scholar
D'Onghia, G, Maiorano, P, Carlucci, R, Capezzuto, F, Carluccio, A, Tursi, A and Sion, L (2012) Comparing deep-sea fish fauna between coral and non-coral ‘megahabitats’ in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS ONE 7, e44509.Google Scholar
D'Onghia, G, Capezzuto, F, Cardone, F, Carluzzi, L, Carluccio, A, Chimienti, G, Corriero, G, Longo, C, Maiorano, P, Mastrototaro, F, Panetta, P, Rosso, A, Sanfilippo, R, Sion, L and Tursi, A (2015) Macro- and megafauna recorded in the submarine Bari canyon (southern Adriatic, Mediterranean Sea) using different tools. Mediterranean Marine Science 16, 180196.Google Scholar
de la Torriente, A, Aguilar, R, Serrano, A, García, S, Fernández, LM, García Muñoz, M, Punzón, A, Arcos, JM and Sagarminaga, R (2014) Sur de Almería – Seco de los Olivos. Proyecto LIFE + INDEMARES. Ed. Fundación Biodiversidad del Ministerio de Agricultura, Alimentación y Medio Ambiente. 102 pp.Google Scholar
Duineveld, GCA, Lavaleye, MSS and Berghuis, EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Marine Ecology Progress Series 277, 1323.Google Scholar
Fabri, MC, Pedel, L, Beuck, L, Galgani, F, Hebbeln, D and Freiwald, A (2014) Megafauna of vulnerable marine ecosystems in French Mediterranean submarine canyons: spatial distribution and anthropogenic impacts. Deep Sea Research Part II: Topical Studies in Oceanography 104, 184207.Google Scholar
Fourt, M, Goujard, A, Pérez, T and Chevaldonné, P (2017) Guide de la faune profonde de la mer Méditerranée. Explorations des roches et des canyons sous-marins des côtes françaises. Patrimoines naturels. Publications scientifiques du Museum national d'Histoire naturelle de Paris 75, 1184.Google Scholar
Freiwald, A, Beuck, L, Rüggeberg, A, Taviani, M and Hebbeln, D (2009) The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22, 5874.Google Scholar
Freiwald, A, Boetius, A and Bohrmann, G (2011) Deep Water Ecosystems of the Eastern Mediterranean – Cruise No. 70, Leg 1–3. METEOR-Berichte, 312 pp.Google Scholar
Gori, A, Orejas, C, Madurell, T, Bramanti, L, Martins, M, Quintanilla, E, Marti-Puig, P, Lo Iacono, C, Puig, P, Requena, S, Greenacre, M and Gili, JM (2013) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences (BG) 10, 20492060.Google Scholar
Hooper, JNA (2000) Sponguide. Guide to Sponge Collection and Identification. John NA Hooper Qld. Museum, Australia.Google Scholar
Jensen, A and Frederiksen, R (1992) The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia 77, 5369.Google Scholar
Longo, C, Mastrototaro, F and Corriero, G (2005) Sponge fauna associated with a Mediterranean deep-sea coral bank. Journal of the Marine Biological Association of the United Kingdom 85, 13411352.Google Scholar
Longo, C, Cardone, F, Pierri, C, Mercurio, M, Mucciolo, S, Nonnis Marzano, C and Corriero, G (2017) Sponges associated with coralligenous formations along the Apulian coasts. Marine Biodiversity 48, 21512163.Google Scholar
Mastrototaro, F, D'onghia, G, Corriero, G, Matarrese, A, Maiorano, P, Panetta, P, Gherardi, M, Longo, C, Rosso, A, Sciuto, F, Sanfilippo, R, Gravili, C, Boero, F, Taviani, M and Tursi, A (2010) Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep Sea Research Part II: Topical Studies in Oceanography 57, 412430.Google Scholar
McCloskey, LR (1970) The dynamics of the community associated with a marine scleractinian coral. Internationale Revue der gesamten Hydrobiologie und Hydrographie 55, 1381.Google Scholar
Morrow, C and Cárdenas, P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology 12, 7.Google Scholar
Mortensen, PB and Fosså, JH (2006) Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. Proceedings of 10th International Coral Reef Symposium, pp. 18491868.Google Scholar
Mortensen, PB, Hovland, T, Fosså, JH and Furevik, DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. Journal of the Marine Biological Association of the United Kingdom 81, 581597.Google Scholar
Orejas, C, Gori, A and Gili, JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255255.Google Scholar
Orejas, C, Gori, A, Iacono, CL, Puig, P, Gili, JM and Dale, MR (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Marine Ecology Progress Series 397, 3751.Google Scholar
Pardo, E, Rubio, RA, García, S and Ubero, J (2011) Documentación de arrecifes de corales de agua fría en el Mediterráneo occidental (Mar de Alborán). Chronica naturae 1, 2034.Google Scholar
Pinardi, N and Masetti, E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 153173.Google Scholar
Pulitzer-Finali, G (1983) A collection of Mediterranean Demospongiae (Porifera) with, in appendix, a list of the Demospongiae hitherto recorded from the Mediterranean Sea. Annali del Museo civico di storia naturale Giacomo Doria 84, 445621.Google Scholar
Reyss, D (1964) Observations faites en soucoupe plongéante dans deux vallées sous-marines de la Mer Catalane: le rech du Cap et le rech Lacaze-Duthiers. Bulletin de l'Institut Océanographique. Fondation Albert I, Prince de Monaco 63, 18.Google Scholar
Rogers, AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. International Review of Hydrobiology 84, 315406.Google Scholar
Rueda, JL, Urra, J, Aguilar, R, Angeletti, L, Bo, M, García-Ruiz, C, González-Duarte, M, López, E, Madurell, T, Maldonado, M, Mateo-Ramírez, A, Megina, C, Moreira, J, Moya, F, Ramalho, L, Rosso, A, Sitjá, C and Taviani, M (2018) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas. In Orejas, C and Jiménez, C (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Berlin: Springer, pp. 295333Google Scholar
Schembri, P, Dimech, M, Camilleri, M and Page, R (2007) Living deep-water Lophelia and Madrepora corals in Maltese waters (Strait of Sicily, Mediterranean Sea). Cahiers de Biologie Marine 48, 7783.Google Scholar
Stephens, J (1915) XV. Atlantic Sponges collected by the Scottish National Antarctic Expedition. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 50, 423467.Google Scholar
Stephens, J (1921) [1920] Sponges of the Coasts of Ireland. II. The Tetraxonida (concluded). Scientific Investigations of the Fisheries Branch. Department of Agriculture for Ireland 1920(2), 1–75, pls I–VI.Google Scholar
Taviani, M, Remia, A, Corselli, C, Freiwald, A, Malinverno, E, Mastrototaro, F, Savini, A and Tursi, A (2005) First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean basin). Facies 50, 409417.Google Scholar
Taviani, M, Vertino, A, Lopez Correa, M, Savini, A, De Mol, B, Remia, A, Montagna, P, Angeletti, L, Zibrowius, H, Alves, T, Salomidi, M, Ritt, B and Henry, P (2011) Pleistocene to recent deep-water corals and coral facies in the Eastern Mediterranean. Facies 57, 579603.Google Scholar
Taviani, M, Angeletti, L, Canese, S, Cannas, R, Cardone, F, Cau, A, Cau, AB, Follesa, MC, Marchese, F, Montagna, P and Tessarolo, C (2017) The ‘Sardinian cold-water coral province’ in the context of the Mediterranean coral ecosystems. Deep-Sea Research II 145, 6178.Google Scholar
Topsent, E (1894) Etude monographique des Spongiaires de France. I. Tetractinellida. Archives de Zoologie Expérimentale et Générale 2, 259400.Google Scholar
Topsent, E (1900) Etude monographique des Spongiaires de France, III Monaxonida (Hadromeria). Archives de Zoologie Expérimentale et Générale 8, 1331.Google Scholar
Topsent, E (1904) Spongiaires des Açores. Résultats des campagnes scientifiques accomplies par Le Prince Albert I. Monaco 25, 1280, pls 1–18.Google Scholar
Topsent, E (1928) Spongiaires de l'Atlantique et de la Méditerranée provenant des croisiéres du Prince Albert ler de Monaco. Résultats des campagnes scientifiques accomplies par Le Prince Albert Ier. Monaco 74, 1376, pls I–XI.Google Scholar
Tunesi, L and Diviacco, G (1997) Observations by submersible on the bottoms off shore Portofino promontory (Ligurian Sea). Atti del 12° Congressso dell'AIOL 1, 6174.Google Scholar
Tursi, A, Mastrototaro, F, Matarrese, A, Maiorano, P and D'onghia, G (2004) Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean). Chemistry and Ecology 20, 107116.Google Scholar
Vacelet, J (1969) Eponges de la roche du large et de l'étage bathyal de Méditerranée: récoltes de la soucoupe plongeante Cousteau et dragages. Mémoires du Muséum National d'Histoire naturelle 59, 146219.Google Scholar
Vafidis, D, Koukouras, A and Voultsiadou-Koukoura, E (1997) Actiniaria, Corallimorpharja, and Scleractinia (Hexacorallia, Anthozoa) of the Aegean Sea, with a checklist of the eastern Mediterranean and Black Sea species. Israel Journal of Zoology 43, 5570.Google Scholar
Van Soest, RWM and Hooper, JA (1993) Taxonomy, phylogeny and biogeography of the marine sponge genus Rhabderemia Topsent, 1890 (Demospongiae, Poecilosclerida). Scientia Marina 57, 319351.Google Scholar
Van Soest, RWM, Cleary, DFR, de Kluijver, MJ, Lavaleye, MSS, Maier, C and van Duy, FC (2007) Sponge diversity and community composition in Irish bathyal coral reefs. Contributions to Zoology 76, 121142.Google Scholar
Volz, P (1939) Die Bohrschwamme (Clioniden) der Adria. Thalassia 3, 164.Google Scholar
Zibrowius, H (1980) Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-oriental. Mémoires de l'Institut Océanographique, Monaco 11, 107.Google Scholar