Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T04:42:15.575Z Has data issue: false hasContentIssue false

The Composition of Tidally Deposited Growth Lines in the Shell of the Edible Cockle, Cerastoderma Edule

Published online by Cambridge University Press:  11 May 2009

Margaret R. Deith
Affiliation:
The Godwin Laboratory, Free School Lane, Cambridge CB2 3RS

Extract

The shells of marine invertebrates grow incrementally (Wilbur, 1972). When a section of shell is observed under the microscope, the increments are often visible, separated by fine lines (Fig. 1). Studies of these phenomena have focused chiefly on the periodicity of increment and growth-line formation, principally because of its geological or archaeological application as a ‘biological clock’ (e.g. Wells, 1963; Koike, 1973).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, R. M., 1964. Microtextural variation in pelecypod shells. Malacologia, 2, 6986.Google Scholar
Boyden, C. R., 1972. Aerial respiration of the cockle Cerastoderma edule in relation to temperature. Comparative Biochemistry and Physiology, 43A, 697712.CrossRefGoogle Scholar
Crenshaw, M. A. & Neff, J. M., 1969. Decalcification at the mantle–shell interface in molluscs. American Zoologist, 9, 881885.CrossRefGoogle Scholar
Crisp, D. J. & Richardson, C. A., 1975. Tidally produced internal bands in the shell of Eliminius modestus. Marine Biology, 33, 155160.CrossRefGoogle Scholar
Dolman, J., 1975. A technique for the extraction of environmental and geophysical information from growth records in invertebrates and stromatolites. In Growth Rhythms and the History of the Earth's Rotation (ed. Rosenberg, G. D. and Runcorn, S. K.), pp. 191221. London: Wiley.Google Scholar
Ekaratne, S. U. K. & Crisp, D. J., 1982. Tidal micro-growth bands in intertidal gastropod shells, with an evaluation of band-dating techniques. Proceedings of the Royal Society (B), 214, 305323.Google Scholar
Farrow, G. E., 1971. Periodicity structures in the bivalve shell: experiments to establish growth controls in Cerastoderma edule from the Thames estuary. Palaeontology, 14, 571588.Google Scholar
Gordon, J. & Carriker, M. R., 1978. Growth lines in a bivalve mollusk: subdaily patterns and dissolution of the shell. Science, New York, 202, 519521.CrossRefGoogle Scholar
Gregoire, C., Duchateau, G. & Florkin, M., 1955. La trame protidique des nacres et des perles. Annales de l'Institut océanographique, 31, 136.Google Scholar
Koike, H., 1973. Daily growth lines of the clam, Meretrix lusoria – a basic study for the estimation of prehistoric seasonal gathering. Journal of the Anthropological Society of Nippon, 81, 122138.CrossRefGoogle Scholar
Koike, H., 1980. Seasonal Dating by Growth-line Counting of the Clam, Meretrix lusoria. Toward a Reconstruction of Prehistoric Shell-collecting Activities in Japan. Tokyo: University of Tokyo Press.Google Scholar
Lutz, R. A. & Rhoads, D. C., 1977. Anaerobiosis and a theory of growth line formation. Science, New York, 198, 12221227.CrossRefGoogle Scholar
Morton, B., 1970. The tidal rhythm and rhythm of feeding and digestion in Cardium edule. Journal of the Marine Biological Association of the United Kingdom, 50, 499512.Google Scholar
Nakahara, H., Kakei, M. & Bevelander, G., 1981. Studies on the formation of the crossed lamellar structure in the shell of Strombus gigas. Veliger, 23, 207211.Google Scholar
Pannella, G., 1972. Paleontological evidence on the earth's rotational history since Early Precambrian. Astrophysics and Space Science, 16, 212237.CrossRefGoogle Scholar
Pannella, G., 1975. Paleontological clocks and the history of the earth's rotation. In Growth Rhythms and the History of the Earth's Rotation (ed. Rosenberg, G. D. and Runcorn, S. K.), pp. 253294. London: Wiley.Google Scholar
Richardson, C. A., Crisp, D. J. & Runham, N. W., 1979. Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edule (L.). Malacologia, 18, 277290.Google Scholar
Richardson, C. A., Crisp, D. J. & Runham, N. W., 1981. Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule. Journal of the Marine Biological Association of the United Kingdom, 61, 465476.Google Scholar
Taylor, J. D., Kennedy, W. J. & Hall, A., 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculaceae–Trigonacea. Bulletin of the British Museum (Natural History) (Zoology), supplement 3, 125 pp.Google Scholar
Taylor, J. D., Kennedy, W. J. & Hall, A., 1972. The shell structure and mineralogy of the bivalvia. 2. Lucinacea–Clavagellacea. Conclusions. Bulletin of the British Museum (Natural History) (Zoology), 22, 253294.CrossRefGoogle Scholar
Wada, K., 1961. Crystal growth of molluscan shells. Bulletin of the National Pearl Research Laboratory, 7, 703828.Google Scholar
Wells, J. W., 1963. Coral growth and geochronometry. Nature, London, 197, 948950.CrossRefGoogle Scholar
Wilbur, K. M., 1964. Shell formation and regeneration. In Physiology of Mollusca (ed. Wilbur, K. M. and Yonge, C. M.), pp. 243282. New York: Academic Press.CrossRefGoogle Scholar
Wilbur, K. M., 1972. Shell formation in mollusks. In Chemical Zoology, vol. VII, Mollusca (ed. Florkin, M. and Scheer, B. T.), pp. 103145. New York: Academic Press.Google Scholar
Wilkes, D. A. & Crenshaw, M. A., 1979. Formation of a dissolution layer in molluscan shells. Scanning Electron Microscopy, 11, 469474.Google Scholar