Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T13:10:48.962Z Has data issue: false hasContentIssue false

Bathymetric and Seasonal Patterns in the Sublittoral Megafauna off Central Chile

Published online by Cambridge University Press:  11 May 2009

V.A. Gallardo
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Casilla 2407, Concepción, Chile. Centro EULA-Chile, Universidad de Concepción, Casilla 156-C, Concepción, Chile.
R. Roa
Affiliation:
Instituto de Fomento Pesquero, Casilla 347, Talcahuano, Chile
F.D. Carrasco
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Casilla 2407, Concepción, Chile.
J.I. Cañete
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Casilla 2407, Concepción, Chile.
S. Briones-Enrfquez
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Casilla 2407, Concepción, Chile.
M. Baltazar
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Casilla 2407, Concepción, Chile.

Extract

The sublittoral off central Chile represents a dynamic border separating an oxic surface equatorward current and an oxygen-poor poleward undercurrent. This investigation dealt with whether megafaunal assemblage structure and its temporal and bathymetric distribution were affected by this feature. The problem was approached by investigating the empirical relations between an assemblage index of abundance and physical factors of the environment. The megafauna off Conceptión Bay, central Chile (36°32′S) was thus sampled with an Agassiz trawl on eight cruises performed during 1991 and 1992 at three fixed stations (40, 64 and 96 m depth). Simultaneous reference samples of sea-water were taken to measure temperature, salinity, and dissolved oxygen. Descriptive assemblage attributes, diversity indices, and principal component analysis (PCA) for assemblage study were used. Moreover stepwise linear regression, with the first principal component of the specific abundance matrix as dependent variable was used to study relationships between temperature, salinity and dissolved oxygen and an assemblage of 23 species. Species richness, biomass and abundance decreased significantly with depth while diversity was highest in the intermediate depth station. Discontinuities were thus evident between the shallow, intermediate and deep stations. The grouping of samples in the plane formed by the first and second principal components showed a similar bathymetric discontinuity. In the Euclidian plane, a seasonal cycle of variation of the shallow sampling site was evident. Between 46 and 64 m depth lies a boundary separating different states of the same assemblage, the shallow seasonally variable and the deep constant. The intermediate station shares characteristics of both these stations reflecting a more variable environment. The overall bathymetric and the shallow seasonal patterns of variation were statistically linked to dissolved oxygen.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahumada, R. & Chuecas, L., 1979. Algunas características hidrográficas de la Bahía de Conceptión (36°40′S 73°02′W) y áreas adyacentes, Chile. Guyana (Misc.), 8, 156.Google Scholar
Ahumada, R., Matrai, P. & Silva, N., 1991. Phytoplankton biomass distribution and relationship to nutrient enrichment during an upwelling event off Conceptión Bay, Chile. Boletin de la Sociedad de Biología de Conceptión, 62, 719.Google Scholar
Ahumada, R., Rudolph, G.A. & Martínez, H.V., 1983. Circulation and fertility of water in Conceptión Bay, Chile. Estuarine, Coastal and Shelf Science, 16, 95105.Google Scholar
Arancibia, F.H., 1991. Análisis ecológico-pesquero del recurso langostino Colorado (Pleuroncodes monodon) y su interaction con merluza común (Merluccius gayi) y lenguado de ojos grandes (Hippoglossinā macrops). Biología Pesquera. Santiago, 20, 3748.Google Scholar
Arancibia, F.H. & Meléndez, C.R., 1987. Alimentatión de peces concurrentes en la pesquería de Pleuroncodes monodon Milne Edwards. Investigatión Pesquera. Instituto de Fomento Pesquero, Santiago, 34, 113128.Google Scholar
Arcos, D.F. & Wilson, R.E., 1984. Upwelling and the distribution of chlorophyll a within the Bay of Concepción, Chile. Estuarine, Coastal and Shelf Science, 18, 2535.CrossRefGoogle Scholar
Arntz, W.E., Tarazona, J., Gallardo, V.A., Flores, L.A. & Salzwedel, H., 1991. Benthos communities in oxygen deficient shelf and upper slope areas of the Peruvian and Chilean Pacific coast, and changes caused by El Niño. In Modern and Ancient continental shelf anoxia (ed. R.V., Tyson and T.H., Pearson), pp. 131154. London: Geological Society Special Publication.Google Scholar
Bahamonde, N., Henríquez, G., Zuleta, A., Bustos, H. & Bahamonde, R., 1986. Population dynamics and fisheries of squat lobsters, Family Galatheidae, in Chile. Canadian Special Publication of Fisheries and Aquatic Sciences, 92, 254268.Google Scholar
Brandhorst, W., 1971. Condiciones oceanográficas estivales frente a la costa de Chile. Revista de Biología Marina. Valparaíso, 14, 4584.Google Scholar
Burd, B.J., Nemec, A. & Brinkhurst, R.O., 1990. The development and application of analytical methods in benthic marine infaunal studies. Advances in Marine Biology, 26, 169247.CrossRefGoogle Scholar
Fonseca, T.R., 1989. An overview of the poleward undercurrent and upwelling along the Chilean coast. In Poleward flows along eastern ocean boundaries. Coastal and estuarine studies (ed. S.J., Neshyba et al.), pp. 177228. New York: Springer Verlag.Google Scholar
Gallardo, V.A., 1977. Large benthic microbial communities in sulphide biota under Peru–Chile subsurface countercurrent. Nature, London, 268, 331332.CrossRefGoogle Scholar
Gallardo, V.A., 1985. Efectos del fenómeno ‘El Niño’ sobre el bentos sublitoral frente a Conceptión, Chile. In ‘El Niño’ su impacto en la fauna marina (ed. W., Arntz et al.), pp. 7985. Callao, Perú: Boletín. Instituto del Mar del Perú. Volumen Extraordinario.Google Scholar
Gallardo, V.A., Cañete, J.I., Roa, R., Enríquez-Briones, S. & Baltazar, M., 1994. Recruitment of the squat lobster Pleuroncodes monodon on the continental shelf off central Chile. Journal of Crustacean Biology, 14, 665669.CrossRefGoogle Scholar
Gallardo, V.A., Carrasco, F.D., Roa, R. & Cañete, J.I., 1995. Ecological patterns in the benthic macrobiota across the continental shelf off central Chile. Ophelia, 40, 167188.CrossRefGoogle Scholar
Gallardo, V.A., Enríquez-Briones, S., Roa, R., Acuña, A., Cañete, J.I. & Baltazar, M., 1992. Biología del langostino Colorado Pleuroncodes monodon H. Milne Edwards, 1837 y especies afines (Crustacea, Decapoda, Anomura, Galatheidae): sinopsis. In Elementos básicos para la gestión de los recursos marinos costeros de la región del Biobío, vol. 2 (ed. F., Faranda & O., Parra), pp. 67109. Concepción: Monografías Científicas EULA-Chile.Google Scholar
Gunther, E.R., 1936. A report on oceanographical investigations in the Peru Coastal Current. Discovery Reports, 13, 107276.Google Scholar
Holme, N.A. & Mclntyre, A.D., 1984. Methods for the study of marine benthos. Oxford: Blackwell Scientific Publications. [IBP Handbook no. 16.]Google Scholar
Morrison, D.F., 1967. Multivariate statistical methods. New York: McGraw-Hill.Google Scholar
Roa, R., 1993. Annual growth and maturity function of the squat lobster Pleuroncodes monodon (Decapoda, Galatheidae) in central Chile. Marine Ecology Progress Series, 97, 157166.CrossRefGoogle Scholar
Roa, R., & Bahamonde, R., 1993. Growth and expansion of an exploited population of the squat lobster (Pleuroncodes monodon) after three years without harvesting. Fisheries Research, 18, 305319.CrossRefGoogle Scholar
Roa, R., Gallardo, V.A., Ernst, B., Baltazar, M., Cañete, J.I. & Enríquez-Briones, S., 1995. Nursery ground, age structure and abundance of juvenile squat lobster (Pleuroncodes monodon) on the continental shelf off central Chile. Marine Ecology Progress Series, 116, 4754.CrossRefGoogle Scholar
Rhoads, D.C. & Morse, J.W., 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4, 413428.CrossRefGoogle Scholar
Rosenberg, R., Arntz, W.E., Flores, E.C. de, Flores, L.A., Carbajal, G., Finger, I. & Tarazona, J., 1983. Benthos biomass and oxygen deficiency in the upwelling system off Perú. Journal of Marine Research, 41, 263279.CrossRefGoogle Scholar
Rowe, G.T., 1971a. Benthic biomass in the Pisco, Peru upwelling. Investigaciones Pesqueras. Barcelona, 35, 127135.Google Scholar
Rowe, G.T., 1971b. Benthic biomass and surface productivity. In Fertility of the sea, vol. 2 (ed. J.D., Costlow), pp. 441–154. New York: Gordon & Breach Science Publishers.Google Scholar
Rowe, G.T., 1985a. The benthic processes of coastal upwelling ecosystems. In Coastal upwelling (ed. F.A., Richards), pp. 464–171. Washington, DC: American Geophysical Union.Google Scholar
Rowe, G.T. & Margalef, R., 1985b. Benthic production and processes off Baja California, north-west Africa and Peru: a classification of benthic subsystems in upwelling ecosystems. In International symposium on the most important upwelling areas off western Africa (Cape Blanco and Benguela), vol. 2 (ed. C., Bas et al.), pp. 589612. Barcelona: Publicaciones del Instituto de Investigaciones Pesqueras.Google Scholar
Silva, N. & Konow, D., 1975. Contributión al conocimiento de las masas de aguas en el Pacífico Sudoriental. Expeditión Krill. Crucero 3–4 julio–agosto 1974. Revista Comisión Permanente del Pacifico Sur, 3, 6375.Google Scholar
Smith, R.L., 1992. Coastal upwelling in the modern ocean. In Upwelling systems. Evolution since the early Miocene (ed. C.P., Summerhayes et al.), pp. 928. London: Geological Society Special Publication.Google Scholar
Wilkinson, L., 1990. Systat: the system for statistics. Evanston: SYSTAT Inc.Google Scholar
Wooster, W.S. & Gilmartin, M., 1961. The Perú–Chile Undercurrent. Journal of Marine Research, 19, 97122.Google Scholar
Wooster, W.S. & Reid, J.L. Jr, 1963. Eastern boundary currents. In The sea, vol. 2 (ed. M.N., Hill), pp. 253280. New York: John Wiley & Sons.Google Scholar
Yáñez, R.E., 1974. Distribution y abundancia relativa estacional de los recursos disponibles a un arte de arrastre camaronero frente a la costa de Valparaíso (invierno y primavera 1972). Investigaciones Marinas. Valparaíso, 5, 126137.Google Scholar
Yáñez, R.E. & Barbieri, B.M.A., 1974. Distribution y abundancia relativa de los recursos disponibles a un arte de arrastre camaronero frente a la costa de Valparaíso (invierno 1973). Investigaciones Marinas. Valparaíso, 5, 138155.Google Scholar
Yáñez, R.E., Trujillo, P.H., Barbieri, B.M.A. & Melo, F.T., 1974. Distribución y abundancia relativa estacional de los recursos disponibles a un arte de arrastre merlucero frente a la costa de Valparaíso (otoño, invierno y primavera 1972). Investigaciones Marinas. Valparaíso, 5, 111125.Google Scholar