Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T10:51:08.525Z Has data issue: false hasContentIssue false

The barnacle excretory organ

Published online by Cambridge University Press:  11 May 2009

K. N. White
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd
G. Walker
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd

Extract

The paired excretory organs or maxillary glands of the adult barnacles, Balanus balanoides and Balanus hameri, lie within the posterior part of the body below and to either side of the foregut. Each organ has an end sac linked to an efferent duct via a valve. The sac-shaped efferent duct connects with a relatively short terminal duct, opening out at the base of the second maxilla. The end sac consists of podocytelike cells having marked morphological and cytochemical similarities to the equivalent region of other Crustacea and to the vertebrate glomerulus. The main cells of the valve contain extensive apical secretion. They rest upon a series of modified end-sac cells projecting into the efferent duct. The efferent duct is composed of a uniform flattened epithelium which is cytochemically unreactive. The cells are lined by a short microvillous border, below which is a series of tubules which appear to be invaginations of the apical membrane. The morphology of efferent duct cells is not indicative of a highly active solute reabsorptive epithelium, but secretion of membrane-bound bodies into the efferent duct lumen was observed. The terminal duct is a relatively short, cuticle-lined ectodermal infolding. The parenchyma cells surrounding the efferent duct exhibit a marked affinity for certain dyes when injected into the haemolymph, indicative of a possible role in the elimination of material. The excretory organ is surrounded by a network of elastic fibres and is suspended within the body by strands of connective tissue and a complex series of tendon-muscle connexions. The end sac is well supplied with haemolymph from the scutal sinus but the supply to the efferent duct is more restricted.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berridge, M. J. & Oschman, J. L., 1972. Transporting Epithelia. 99 pp. London: Academic Press.Google Scholar
Bruchhavsen, F. V. & Merker, H. J., 1967. Morphologischer und chemischer aufbau isolierter basalmembranen aus der nieremunder der ratte. Histochemie, 8, 90108.CrossRefGoogle Scholar
Bubel, A., 1975. An ultrastructural study of the mantle of the barnacle Elminius modestus Darwin, in relation to shell formation. Journal of Experimental Marine Biology and Ecology, 20, 287324.CrossRefGoogle Scholar
Burnett, B. R., 1972. Aspects of the circulatory system of Pollicipes polymerus J. B. Sowerby (Cirripedia: Thoracica). Journal of Morphology, 136, 79108.CrossRefGoogle Scholar
Cannon, H. G., 1940. On the antomy of Gigantocypris mulleri. DiscoveryReports, 19, 185201.Google Scholar
Cannon, H. G., 1947. On the anatomy of the pedunculate barnacle Lithotrya. Philosophical Transactions of the Royal Society (B), 233, 89136.Google ScholarPubMed
Cook, M. A., 1973. Organic Acid Secretion by the Antennal Gland of the Crayfish, Austropotamobius pallipes pallipes (Leveboullet). Ph.D. Thesis, University of London.Google Scholar
Copeland, D. E., 1963. Possible osmoregulatory cells in crab gills. Journal of Cell Biology, 19, 16.Google Scholar
Copeland, D. E., 1968. Fine structure of salt water uptake in the land crab. American Zoologist, 8, 417432.CrossRefGoogle Scholar
Crochan, P. C., 1958. The mechanism of osmotic regulation in Artemia salina (L.): the physiology of the branchiae. Journal of Experimental Biology, 35, 234242.CrossRefGoogle Scholar
Dean, R. T., 1977. Lysosomes. 60 pp. London: Edward Arnold. [Institute of Biology, Studies in Biology, no. 84.]Google ScholarPubMed
Defner, A., 1910. Der bau der maxillardüse bei cirripedian. Arbeiten aus des Zoologischen Institut der Universität Wien und der Zoologischen Station in Triest, 16, 182206.Google Scholar
Farquhar, M. G., 1975. The primary glomerular filtration barrier - basement membrane or epithelial slits? Kidney International, 8, 197211.CrossRefGoogle ScholarPubMed
Farquhar, M. G. & Palade, G. E., 1960. Segregation of ferritin in glomerular protein absorption droplets. Journal of Biophysical and Biochemical Cytology, 7, 297304.CrossRefGoogle ScholarPubMed
Farquhar, M. G., Wessing, S. L. & Palade, G. E., 1961. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. Journal of Experimental Medicine, 113, 4766.CrossRefGoogle ScholarPubMed
Flemister, S. C., 1959. Histopathology of gill and kidney of the crab Ocypode albicans. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 116, 3748.CrossRefGoogle Scholar
Goodrich, E. S., 1945. The study of nephridia and genital ducts since 1895. Quarterly Journal of Microscopical Science, 86, 113301.Google Scholar
Gray, P., 1954. The Microtomists’ formulary and Guide. 794 pp. London: Constable and Co.Google Scholar
Gruvel, A., 1893. Sur l'armature bucccle et une nouvelle glande digestive des cirrhipèdes. Compte rendu hebdomadaire des séances de l'Académie des sciences, 115, 858861.Google Scholar
Gutmann, W. F., 1960. Funktionelle morphologie von Balanus balanoides. Abhandlungen hrsg. von der Senckenbergischen naturforschenden Gesellschaft, 500, 143.Google Scholar
Hall, B. V., 1977. A slit pore theory of capillary nitration based on electron micrographic data on the filtration pathway through the cellular layer of mammalian glomerular capillary walls. Transactions of the American Microscopical Society, 96, 413437.CrossRefGoogle Scholar
Hamburger, J., Ricket, G., Grünfeld, J. P. & Walsh, A., 1971. Organ Physiology. Structure and Function of the Kidney. 115 pp. Philadelphia: Saunders.Google Scholar
Icely, J. D. & Nott, J. A., 1979. The general morphology and fine structure of the antennary gland of Corophium volutator (Amphipoda: Crustacea). Journal of the Marine Biological Association of the United Kingdom, 59, 745755.CrossRefGoogle Scholar
Kirschner, L. B., 1967. Comparative physiology: invertebrate excretory organs. Annual Review of Physiology, 29, 169196.CrossRefGoogle ScholarPubMed
Kirschner, L. B. & Wagner, S. J., 1965. The site and permeability of the filtration locus in the crayfish antennal gland. Journal of Experimental Biology, 43, 385395.CrossRefGoogle Scholar
Koehler, R., 1892. Recherches sur la cavité générale et sur l'appareil excrétur des cirrhipèdes Compte rendu hebdomadaire des séances de l'Academie des sciences, 114, 12141217.Google Scholar
Kümmel, G., 1964. Das Cölomsäckchen der antennendrüse von Cambarus affinis Say (Decapoda: Crustacea). Zoologische Beiträge, 10, 227252.Google Scholar
Kümmel, G., 1967. Die podocyten. Zoologische Beiträge, 13, 245264.Google Scholar
Kümmel, G., 1973. Filtration structure in excretory systems. A comparison. In Comparative Physiology (ed. Bolis, L., Schmidt-Nielsen, K. and Madrell, S. H. P.), pp. 211240. Amsterdam: North-Holland.Google Scholar
Latta, E., 1970. The glomerular capillary wall. Journal of Ultrastructure Research, 32, 526544.CrossRefGoogle Scholar
Malaczynska-Suchcitz, Z. & Ucinski, B., 1962. Cytophysiological and cytochemical investigation on the epithelium of the antennal glands of the crayfish Astacus. Folia biologica, 10, 251292.Google Scholar
Maluf, N. S. R., 1939. On the anatomy of the kidney of the crayfish and on the absorption of chloride from freshwater by this animal. Zoologische Jahrbücher (Abteilung Allgemeine Zoologie und Physiologie der Tiere), 59, 515534.Google Scholar
Marchal, P., 1892. Récherches anatomique et physiologique sur l'appareil excéteur des crustacés decapodes. Archives des zoologie expérimental et générale, 10, 57275.Google Scholar
Moffat, D. B., 1975. The Mammalian Kidney. 263 pp. Cambridge: Cambridge University Press.Google Scholar
Nilsson-Cantell, C. A., 1921. Cirripedian-studien. Zur kenntnis der biologie, anatomie, und systematik diesser gruppe. Zoologiska bidrag från Uppsala, 7, 75390.Google Scholar
Normandin, D. K., 1977. Conformatory evidence of a slit pore theory of glomerular capillary nitration. Transactions of the American Microscopical Society, 96, 438452.CrossRefGoogle Scholar
Pearse, A. G. E., 1968. Histochemistry: Theoretical and Applied, vol. 1. 759 pp. London: Churchill Livingstone.Google Scholar
Peters, H., 1935. Über den einfluss des salzgehaltes im aussenmedium auf den bar und die funktion der exkretionsorgane decapoder crustacean (nach Untersuchungen an Potamobius fluviatilus und Homarus vulgaris). Zeitschrift für Morphologie und Ökologie der Tiere, 30, 355381.CrossRefGoogle Scholar
Peterson, D. R. & Loizzi, R. F., 1973. Regional cytology and cytochemistry of the crayfish kidney tubule. Journal of Morphology, 141, 138146.CrossRefGoogle ScholarPubMed
Peterson, D. R. & Loizzi, R. F., 1974. Ultrastructure of the crayfish kidney coelomosac, labyrinth, nephridial canal. Journal of Morphology, 142, 241264.CrossRefGoogle ScholarPubMed
Pockrandt-Hemstedt, H., Schmitz, J.E., Kinne-Saffran, E. & Kinne, R., 1972. Morphologische und biochemischen untersuchungen über die oberflächenstruktur der bürstensaummembran der rattenier. Pflügers Archiv, 333, 297313.CrossRefGoogle Scholar
Renkin, E. M. & Gilmore, E. J. P., 1973. Glomerular filtration. In Handbook of Physiology. Section 8. Renal Physiology (ed. Orloff, J. and Berliner, R. W.), pp. 185248. Washington: American Physiological Society.Google Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology, 17, 208212.CrossRefGoogle ScholarPubMed
Riegel, J. A., 1966. Analysis of formed bodies in urine removed from the crayfish antennal gland by micropuncture. Journal of Experimental Biology, 44, 387395.CrossRefGoogle ScholarPubMed
Riegel, J. A., 1970. A new model of transepithelial fluid movement with detailed application to fluid movement in the crayfish antennal gland. Comparative Biochemistry and Physiology, 36, 403410.CrossRefGoogle Scholar
Riegel, J. A., 1971. Excretion-arthropoda. In Chemical Zoology, vol. 6 (ed. Scheer, B. T. and Florkin, M.), pp. 249277. New York: Academic Press.Google Scholar
Schaffner, A. & Rodewald, R., 1978. Filtration barriers in the coelomic sac of the crayfish Procambarus clarkii. Journal of Ultrastructure Research, 65, 3642.CrossRefGoogle ScholarPubMed
Schorstein, M. V., 1941. On the sphincter valve of the antennal gland of Marinogammarus marinus (Leach). Proceedings of the Royal Society of Edinburgh (B), 61, 130137.Google Scholar
Schmidt-Nielsen, B., Gertz, K. H. & Davis, L. E., 1968. Excretion and ultrastructure of the antennal gland of the fiddler crab Uca mordax. Journal of Morphology, 125, 473496.CrossRefGoogle ScholarPubMed
Spurr, A. R., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 3145.CrossRefGoogle ScholarPubMed
Steedman, H. F., 1947. Ester wax: a new embedding medium. Quarterly Journal of Microscopical Science, 88, 123133.Google Scholar
Tilney, L. G., 1971. Origin and continuity of microtubules. In Results and Problems in Cell Differentiation (ed. Beermann, W., Reinert, J. and Ursprung, H.), pp. 222260. Berlin: Springer-Verlag.Google Scholar
Tilney, L. G. & Porter, K. R., 1967. Studies on the microtubules in Heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. Journal of Cell Biology, 34, 327343.CrossRefGoogle ScholarPubMed
Tyson, G. E., 1968. The fine structure of the maxillary gland of the brine shrimp, Artemia salina: the end sac. Zeitschrift für Zellforschung und mikroskopische Anatomie, 86, 129138.CrossRefGoogle ScholarPubMed
Tyson, G. E., 1969. The fine structure of the maxillary gland of the brine shrimp Artemia salina. The efferent duct. Zeitschrift für Zellforschung und mikroskopische Anatomie, 93, 151163.CrossRefGoogle ScholarPubMed
Walker, G., 1970. The histology, histochemistry and ultrastructure of the cement apparatus of three adult sessile barnacles, Elminius modestus, Balanus balanoides and Balanus hameri. Marine Biology, 7, 239248.CrossRefGoogle Scholar
Walley, L. J., 1969. Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Philosophical Transactions of the Royal Society (B), 256, 237280.Google Scholar
Watson, M. L., 1958. Staining of tissue sections for electron microscopy with heavy metals. Journal of Biophysical and Biochemical Cytology, 4, 475478.CrossRefGoogle ScholarPubMed
White, K. N., 1978. Excretion in Cirripedes. Ph.D. Thesis, University of Wales.Google Scholar
Yamada, E., 1955. The fine structure of the renal glomerulus of the mouse. Journal of Biophysical and Biochemical Cytology, 1, 551566.CrossRefGoogle ScholarPubMed