Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T09:57:44.264Z Has data issue: false hasContentIssue false

Attachment features of mytilids in ecosystems with mobile substrate: Brachidontes rodriguezii in San Antonio Bay (Patagonia, Argentina)

Published online by Cambridge University Press:  07 October 2015

María Cecilia Salas*
Affiliation:
Instituto de Biología Marina y Pesquera Almirante Storni, Av. Güemes 1030, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue (8520) San Antonio Oeste, Río Negro, Argentina Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Omar Defeo
Affiliation:
UNDECIMAR, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
Maite Narvarte
Affiliation:
Instituto de Biología Marina y Pesquera Almirante Storni, Av. Güemes 1030, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue (8520) San Antonio Oeste, Río Negro, Argentina Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
*
Correspondence should be addressed to:M.C. Salas, Instituto de Biología Marina y Pesquera Almirante Storni, Av. Güemes 1030, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue (8520) San Antonio Oeste, Río Negro, Argentina email: mariaceciliasalas@live.com

Abstract

The force required to dislodge mussels from the substrate is known as attachment strength. This feature has been mostly studied in mytilids inhabiting the intertidal of consolidated rocky substrates, whereas it has been less studied in sedimentary substrates. The aim of this study was to evaluate the attachment strength and the number of byssal threads of Brachidontes rodriguezii in two sites with mobile substrates in San Antonio Bay, Argentina [Punta Verde (PV) and Punta Delgado (PD)]. PV has relatively higher current velocities and coarser grain size than PD. Along coastal line transects at two different levels of the mid-intertidal of each site, the attachment strength was measured. The number of byssal threads in collected mytilids and the weight of the sediment adhered to them were recorded in the lab. The attachment strength, the number of byssal threads and the sediment adhered to the byssus differed significantly between levels and sites. Mytilids from the mid-level of both sites where the density was relatively lower, had a significantly greater number of byssal threads and higher weight of sediment adhered. This study reveals that a high amount of coarse sediment adhered to the byssus affects the attachment strength of B. rodriguezii in ecosystems relative to unstable substrates. We underline the importance of mobile substrates in understanding attachment features (attachment strength and byssal threads) of mytilids in this unstable ecosystem.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliotta, S., Schnack, E.J., Isla, F.I. and Lizasoain, G.O. (2000) Desarrollo secuencial de formas de fondo en un régimen macromareal. Revista de la Asociación Argentina de Sedimentología 7, 95107.Google Scholar
Babarro, J.M.F. and Abad, M.J. (2013) Co-existence of two mytilid species in a heterogeneous environment: mortality, growth and strength of shell and byssus attachment. Marine Ecology Progress Series 476, 115128.Google Scholar
Babarro, J.M.F. and Carrington, E. (2013) Attachment strength of the mussel Mytilus galloprovincialis: effect of habitat and body size. Journal of Experimental Marine Biology and Ecology 443, 188196.Google Scholar
Babarro, J.M.F. and Fernández Reiriz, M.J. (2010) Secretion of byssal threads in Mytilus galloprovincialis: quantitative and qualitative values after spawning stress. Journal of Comparative Physiology B 180, 95104.Google Scholar
Babarro, J.M.F., Fernández Reiriz, M.J. and Labarta, U. (2008) Secretion of byssal threads and attachment strength of Mytilus galloprovincialis: the influence of size and food availability. Journal of the Marine Biological Association of the United Kingdom 88, 783791.Google Scholar
Bell, E.C. and Gosline, J.M. (1996) Mechanical design of mussel byssus: material yield enhances attachment strength. Journal of Experimental Biology 199, 10051017.Google Scholar
Bell, E.C. and Gosline, J.M. (1997) Strategies for life in flow: tenacity, morphometry, and probability of dislodgement of two Mytilus species. Marine Ecology Progress Series 159, 197208.CrossRefGoogle Scholar
Bertness, M.D., Crain, C.M., Silliman, B.R., Bazterrica, M.C., Reyna, M.V., Hidalgo, F. and Farina, K. (2006) The community structure of Western Atlantic Patagonian rocky shores. Ecological Monographs 76, 439460.Google Scholar
Caro, A.U., Escobar, J., Bozinovic, F., Navarrete, S.A. and Castilla, J.C. (2008) Phenotypic variability in byssus thread production of intertidal mussels induced by predators with different feeding strategies. Marine Ecology Progress Series 372, 127134.Google Scholar
Carrington, E. (2002a) Seasonal variation in the attachment strength of the blue mussels: causes and consequences. Limnology and Oceanography 47, 17231733.Google Scholar
Carrington, E., Moeser, G.M., Thompson, S.B., Coutts, L.C. and Craig, C.A. (2008) Mussel attachment on rocky shores: the effect of flow on byssus production. Integrative and Comparative Biology 48, 801807.Google Scholar
Carrington, E., Waite, J.H., Sarà, G. and Sebens, K.P. (2015) Mussels as a model system for integrative ecomechanics. Annual Review of Marine Science 7, 443469.Google Scholar
Clarke, M. (1999) The effect of food availability on byssogenesis by the zebra mussel (Dreissena polymorpha pallas). Journal of Molluscan Studies 65, 327333.CrossRefGoogle Scholar
Denny, M.W. (1987) Lift as a mechanism of patch initiation in mussel beds. Journal of Experimental Marine Biology and Ecology 113, 231245.CrossRefGoogle Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. and Robledo, C.W. (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar Google Scholar
Garner, Y.L. and Litvaitis, M.K. (2013a) Effects of wave exposure, temperature and epibiont fouling on byssal thread production and growth in the blue mussel, Mytilus edulis, in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology 446, 5256.Google Scholar
Garner, Y.L. and Litvaitis, M.K. (2013b) Effects of injured conspecifics and predators on byssogenesis, attachment strength and movement in the blue mussel, Mytilus edulis . Journal of Experimental Marine Biology and Ecology 448, 136140.Google Scholar
Hennebicq, R., Fabra, G., Pellerin, C., Marcotte, I., Myrand, B. and Tremblay, R. (2013) The effect of spawning of cultured mussels (Mytilus edulis) on mechanical properties, chemical and biochemical composition of byssal threads. Aquaculture 410–411, 1117.Google Scholar
Horn, D.P. and Walton, S.M. (2007) Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sedimentary Geology 202, 509528.Google Scholar
Lahance, A.A., Myrand, B., Tremblay, R., Koutitonsky, V. and Carrington, E. (2008) Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquatic Biology 2, 119129.CrossRefGoogle Scholar
Moeser, G.M., Leba, H. and Carrington, E. (2006) Seasonal influence of wave action on thread production in Mytilus edulis . Journal of Experimental Biology 209, 881890.Google Scholar
Nicastro, K.R., Zardi, G.I. and McQuaid, C.D. (2007) Behavioural response of invasive Mytilus galloprovincialis and indigenous Perna perna mussels exposed to risk of predation. Marine Ecology Progress Series 336, 169175.Google Scholar
Ocampo, M. and Storero, L.P. (2007) Síntesis de datos físico-químicos del agua de mar obtenidos durante las campañas del Proyecto PID N° 371 en el Golfo San Matías y Bahía de San Antonio, durante el periodo 2004–2007. IBMP Technical Report no. 11/2007, 20 pp.Google Scholar
Piola, A.R. and Scasso, L.M. (1988) Circulación en el Golfo San Matías. Geoacta 15, 3351.Google Scholar
Price, H.A. (1983) Structure and formation on the byssus complex in Mytilus (Mollusca, Bivalvia). Journal of Molluscan Studies 49, 917.Google Scholar
Salas, M.C., Narvarte, M.A. and Defeo, O. (2013) Caracterización general del mejillinar de Brachidontes rodriguezii (d'Orbigny, 1846) en el intermareal de sustrato móvil de la Bahía San Antonio (Río Negro). In Gordillo, S., Burela, S. and Crespi, A. (eds) Resúmenes del Primer Congreso Argentino de Malacología, La Plata, Argentina 18–20 September 2013, pp. 161. [Abstract].Google Scholar
Seguin-Heine, M.O., Lachance, A.A., Genard, B., Myrand, B., Pellerin, C., Marcotte, I. and Tremblay, R. (2014) Impact of open sea habitat on byssus attachment of suspension-cultured blue mussels (Mytilus edulis). Aquaculture 426–427, 189196.Google Scholar
Stephens, E.G. and Bertness, M.D. (1991) Mussel facilitation of barnacle survival in a sheltered bay habitat. Journal of Experimental Marine Biology and Ecology 145, 3348.CrossRefGoogle Scholar
Thompson, T.L. and Glenn, E.P. (1994) Plaster standards to measure water motion. Limnology and Oceanography 39, 17681779.Google Scholar
wa Kangeri, A.K., Jansen, J.M., Barkman, B.R., Donker, J.J.A., Joppe, D.J. and Dankers, N.M.J.A. (2014) Perturbation induced changes in substrate use by the blue mussel, Mytilus edulis, in sedimentary systems. Journal of Sea Research 85, 233240.CrossRefGoogle Scholar
Young, G.A. (1983a) The effect of sediment type upon the position and depth at which byssal attachment occurs in Mytilus edulis . Journal of the Marine Biological Association of the United Kingdom 63, 641651.Google Scholar
Young, G.A. (1985) Byssus-thread formation by the mussel Mytilus edulis: effects of environmental factors. Marine Ecology Progress Series 24, 261271.Google Scholar
Zardi, G.I., McQuaid, C.D. and Nicastro, K.R. (2007) Balancing survival and reproduction: seasonality of wave action, attachment strength and reproductive output in indigenous Perna perna and invasive Mytilus galloprovincialis mussels. Marine Ecology Progress Series 334, 155163.CrossRefGoogle Scholar
Zardi, G.I., Nicastro, K.R., McQuaid, C.D. and Erlandsson, J. (2008) Sand and wave induced mortality in invasive (Mytilus galloprovincialis) and indigenous (Perna perna) mussels. Marine Biology 153, 853858.Google Scholar