Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T10:18:52.180Z Has data issue: false hasContentIssue false

Application of metagenomics to assess microbial communities in water and other environmental matrices

Published online by Cambridge University Press:  10 September 2015

Christopher Staley
Affiliation:
BioTechnology Institute, University of Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN 55108, USA
Michael J. Sadowsky*
Affiliation:
BioTechnology Institute, University of Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN 55108, USA
*
Correspondence should be addressed to: M.J. Sadowsky, BioTechnology Institute, University of Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN 55108, USA email: sadowsky@umn.edu

Abstract

The emergence of metagenomics-based approaches in biology has overcome historical culture-based biases in microbiological studies. This has also enabled a more comprehensive assessment of the microbial ecology of environmental samples. The subsequent development of next-generation sequencing technologies, able to produce hundreds of millions of sequences at improved cost and speed, necessitated a computational shift from user-supervised alignment and analysis pipelines, that were used previously for vector-based metagenomic studies that relied on Sanger sequencing. Current computational advances have expanded the scope of microbial biogeography studies and offered novel insights into microbial responses to environmental variation and anthropogenic inputs into ecosystems. However, new biostatistical and computational approaches are required to handle the large volume and complexity of these new multivariate datasets. While this has allowed more complete characterization of taxonomic, phylogenetic and functional microbial diversity, these tools are still limited by methodological biases, incomplete databases, and the high cost of fully characterizing environmental biodiversity. This review addresses the evolution of methods to monitor surface waters and characterize environmental samples through the recent computational advances in metagenomics, with an emphasis on the study of surface waters. These new methods have provided an abundance of opportunities to expand our understanding of the interaction between microbial communities and public health. Specifically, they have allowed for comprehensive monitoring of bacterial communities in surface waters for changes in community structure associated with faecal contamination and the presence of human pathogens, rather than relying on only a few indicator bacteria to direct public health concerns.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akondi, K.B. and Lakshmi, V.V. (2013) Emerging trends in genomic approaches for microbial bioprospecting. OMICS 17, 6170. doi: 10.1089/omi.2012.0082.CrossRefGoogle ScholarPubMed
Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Review 59, 143169.CrossRefGoogle ScholarPubMed
Barone, R., De Santi, C., Palma Esposito, F., Tedesco, P., Galati, F., Visone, M., Di Scala, A. and De Pascale, D. (2014) Marine metagenomics, a valuable tool for enzymes and bioactive compounds discovery. Frontiers in Marine Science 1, 38. doi: 10.3389/fmars.2014.00038.CrossRefGoogle Scholar
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335336. doi: 10.1038/nmeth.f.303.CrossRefGoogle ScholarPubMed
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G. and Knight, R. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal 6, 16211624.CrossRefGoogle ScholarPubMed
Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M. and Tiedje, J.M. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37, D141D145.CrossRefGoogle ScholarPubMed
Crump, B.C. and Hobbie, J.E. (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnology and Oceanography 50, 17181729.CrossRefGoogle Scholar
Davenport, C.F. and Tümmler, B. (2013) Advances in computational analysis of metagenome sequences. Environmental Microbiology 15, 15. doi: 10.1111/j.1462-2920.2012.02843.x.CrossRefGoogle ScholarPubMed
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G.L. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied Environmental Microbiology 72, 50695072. doi: 10.1128/AEM.03006-05.CrossRefGoogle ScholarPubMed
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. and Knight, R. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 21942200.CrossRefGoogle ScholarPubMed
Ghai, R., Hernandez, C.M., Picazo, A., Mizuno, C.M., Ininbergs, K., Díez, B., Valas, R., DuPont, C.L., McMahon, K.D., Camacho, A. and Rodriguez-Valera, F. (2012) Metagenomes of Mediterranean coastal lagoons. Scientific Reports 2, 490. doi: 10.1038/srep00490.CrossRefGoogle ScholarPubMed
Gibbons, S.M., Caporaso, J.G., Pirrung, M., Field, D., Knight, R. and Gilbert, J.A. (2013) Evidence for a persistent microbial seed bank throughout the global ocean. Proceedings of the National Academy of Sciences USA 110, 46514655.CrossRefGoogle ScholarPubMed
Gilbert, J.A. and Dupont, C.L. (2011) Microbial metagenomics: beyond the genome. Annual Review of Marine Science 3, 347371. doi: 10.1146/annurev-marine-120709-142811.CrossRefGoogle ScholarPubMed
Gilbert, J.A., Field, D., Swift, P., Newbold, L., Oliver, A., Smyth, T., Somerfield, P.J., Huse, S. and Joint, I. (2009) The seasonal structure of microbial communities in the Western English Channel. Environmental Microbiology 11, 31323139.CrossRefGoogle ScholarPubMed
Gilbert, J.A., Steele, J.A., Caporaso, J.G., Steinbrueck, L., Reeder, J., Temperton, B., Huse, S., McHardy, A.C., Knight, R., Joint, I., Somerfield, P., Fuhrman, J.A. and Field, D. (2012) Defining seasonal marine microbial community dynamics. ISME Journal 6, 298308.CrossRefGoogle ScholarPubMed
Goldberg, S.M.D., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern, A., Khouri, H., Kravitz, S.A., Lauro, F.M., Li, K., Rogers, Y., Strausberg, R., Sutton, G., Tallon, L., Thomas, T., Venter, E., Frazier, M. and Venter, J.C. (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proceedings of the National Academy of Sciences USA 103, 1124011245. doi: 10.1073/pnas.0604351103.CrossRefGoogle ScholarPubMed
Gürtler, V. and Stanisich, V.A. (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142(1), 316.CrossRefGoogle ScholarPubMed
Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. and Goodman, R.M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry and Biology 5, R245R249. doi: 10.1016/S1074-5521(98)90108-9.CrossRefGoogle Scholar
Harwood, V.J., Staley, C., Badgley, B.D., Borges, K. and Korajkic, A. (2014) Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiology Review 38, 140. doi: 10.1111/1574-6976.12031.CrossRefGoogle ScholarPubMed
Hurwitz, B.L., Westveld, A.H., Brum, J.R. and Sullivan, M.B. (2014) Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proceedings of the National Academy of Sciences USA 111, 1071410719. doi: 10.1073/pnas.1319778111.CrossRefGoogle ScholarPubMed
Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L. and Welch, D.M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology 8, R143.CrossRefGoogle ScholarPubMed
Huse, S.M., Welch, D.M., Morrison, H.G. and Sogin, M.L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology 12, 18891898. doi: 10.1111/j.1462-2920.2010.02193.x.CrossRefGoogle ScholarPubMed
Huson, D.H., Auch, A.F., Qi, J. and Schuster, S.C. (2007) MEGAN analysis of metagenomic data. Genome Research 17, 377386. doi: 10.1101/gr.5969107.CrossRefGoogle ScholarPubMed
Kennedy, J., Marchesi, J.R. and Dobson, A.D. (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microbial Cell Factories 7, 27. doi: 10.1186/1475-2859-7-27.CrossRefGoogle ScholarPubMed
Kircher, M. and Kelso, J. (2010) High-throughput DNA sequencing – concepts and limitations. BioEssays 32, 524536. doi: 10.1002/bies.200900181.CrossRefGoogle ScholarPubMed
Klappenbach, J.A., Saxman, P.R., Cole, J.R. and Schmidt, T.M. (2001) rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Research 29, 181184. doi: 10.1093/nar/29.1.181.CrossRefGoogle ScholarPubMed
Knight, R., Jansson, J., Field, D., Fierer, N., Desai, N., Fuhrman, J.A., Hugenholtz, P., van der Lelie, D., Meyer, F., Stevens, R., Bailey, M.J., Gordon, J.I., Kowalchuk, G.A. and Gilbert, J.A. (2012) Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology 30, 513520. doi: 10.1038/nbt.2235.CrossRefGoogle ScholarPubMed
Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G., Bushman, F.D., Knight, R. and Kelley, S.T. (2011) Bayesian community-wide culture-independent microbial source tracking. Nature Methods 8, 761763.CrossRefGoogle ScholarPubMed
Kunin, V., Engelbrektson, A., Ochman, H. and Hugenholtz, P. (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12, 118123. doi: 10.1111/j.1462-2920.2009.02051.x.CrossRefGoogle ScholarPubMed
Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. and Huttenhower, C. (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31, 814821. doi: 10.1038/nbt.2676.CrossRefGoogle ScholarPubMed
Larsen, P.E., Field, D. and Gilbert, J.A. (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nature Methods 9, 621625. doi: 10.1038/nmeth.1975.CrossRefGoogle ScholarPubMed
Levine, A.D. and Asano, T. (2004) Recovering sustainable water from wastewater. Environmental Science and Technology 38, 201A208A. doi: 10.1021/es040504n.CrossRefGoogle ScholarPubMed
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüssmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A. and Schleifer, K. (2004) ARB: a software environment for sequence data. Nucleic Acids Research 32, 13631371. doi: 10.1093/nar/gkh293.CrossRefGoogle ScholarPubMed
Mardis, E.R. (2008) The impact of next-generation sequencing technology on genetics. Trends in Genetics 24, 133141. doi: 10.1016/j.tig.2007.12.007.CrossRefGoogle ScholarPubMed
Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F. and Rothberg, J.M. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376380.CrossRefGoogle ScholarPubMed
Mavromatis, K., Ivanova, N., Barry, K., Shapiro, H., Goltsman, E., Mchardy, A.C., Rigoutsos, I., Salamov, A., Korzeniewski, F., Land, M., Lapidus, A., Grigoriev, I., Richardson, P., Hugenholtz, P. and Kyrpides, N.C. (2007) Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods 4, 495500. doi: 10.1038/NMETH1043.CrossRefGoogle ScholarPubMed
Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J. and Edwards, R.A. (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.CrossRefGoogle Scholar
Mitra, S., Gilbert, J.A., Field, D. and Huson, D.H. (2010) Comparison of multiple metagenomes using phylogenetic networks based on ecological indices. ISME Journal 4, 12361242. doi: 10.1038/ismej.2010.51.CrossRefGoogle ScholarPubMed
Namiki, T., Hachiya, T., Tanaka, H. and Sakakibara, Y. (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research 40, e155.CrossRefGoogle ScholarPubMed
Newton, R.J., Bootsma, M.J., Morrison, H.G., Sogin, M.L. and McLellan, S.L. (2013) A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microbial Ecology 65, 10111023. doi: 10.1007/s00248-013-0200-9.CrossRefGoogle ScholarPubMed
Parks, D.H. and Beiko, R.G. (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715721. doi: 10.1093/bioinformatics/btq041.CrossRefGoogle ScholarPubMed
Patin, N.V., Kunin, V., Lidstrom, U. and Ashby, M.N. (2013) Effects of OTU clustering and PCR artifacts on microbial diversity estimates. Microbial Ecology 65, 709719.CrossRefGoogle ScholarPubMed
Peng, Y., Leung, H.C.M., Yiu, S.M. and Chin, F.Y.L. (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 14201428. doi: 10.1093/bioinformatics/bts174.CrossRefGoogle Scholar
Pignatelli, M., Aparicio, G., Blanquer, I., Hernández, V., Moya, A. and Tamames, J. (2008) Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 24, 21242125. doi: 10.1093/bioinformatics/btn355.CrossRefGoogle ScholarPubMed
Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W.G., Peplies, J. and Glockner, F.O. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35, 71887196.CrossRefGoogle Scholar
Reen, F.J., Gutiérrez-Barranquero, J.A., Dobson, A.D.W., Adams, C. and O'Gara, F. (2015) Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Marine Drugs 13, 29242954. doi: 10.3390/md13052924.CrossRefGoogle ScholarPubMed
Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J. and Goodman, R.M. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied Environmental Microbiology 66, 25412547.CrossRefGoogle ScholarPubMed
Rosario, K., Nilsson, C., Lim, Y.W., Ruan, Y. and Breitbart, M. (2009) Metagenomic analysis of viruses in reclaimed water. Environmental Microbiology 11, 28062820. doi: 10.1111/j.1462-2920.2009.01964.x.CrossRefGoogle ScholarPubMed
Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, S., Wu, D., Eisen, J., Hoffman, J.M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-Pfannkoch, C., Venter, J.E., Li, K., Kravitz, S., Heidelberg, J.F., Utterback, T., Rogers, Y., Falcón, L.I., Souza, V., Bonilla-Rosso, G., Eguiarte, L.E., Karl, D.M., Sathyendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-Castillo, G., Ferrari, M.R., Strausberg, R.L., Nealson, K., Friedman, R., Frazier, M. and Venter, J.C. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biology 5, e77. doi: 10.1371/journal.pbio.0050077.CrossRefGoogle ScholarPubMed
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J. and Weber, C.F. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied Environmental Microbiology 75, 75377541. doi: AEM.01541-09 [pii] 10.1128/AEM.01541-09.CrossRefGoogle ScholarPubMed
Segata, N. and Huttenhower, C. (2011) Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS ONE 6, e24704. doi: 10.1371/journal.pone.0024704.CrossRefGoogle ScholarPubMed
Seshadri, R., Kravitz, S.A., Smarr, L., Gilna, P. and Frazier, M. (2007) CAMERA: a community resource for metagenomics. PLoS Biology 5, e75. doi: 10.1371/journal.pbio.0050075.CrossRefGoogle Scholar
Shanks, O.C., Newton, R.J., Kelty, C.A., Huse, S.M., Sogin, M.L. and McLellan, S.L. (2013) Comparison of the microbial community structures of untreated wastewaters from different geographic locales. Applied Environmental Microbiology 79, 29062913. doi: 10.1128/AEM.03448-12.CrossRefGoogle ScholarPubMed
Singleton, D.R., Furlong, M.A., Rathbun, S.L. and Whitman, W.B. (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Applied Environmental Microbiology 67, 43744376. doi: 10.1128/AEM.67.9.4374-4376.2001.CrossRefGoogle ScholarPubMed
Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M. and Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences USA 103, 1211512120.CrossRefGoogle ScholarPubMed
Staley, C., Gould, T.J., Wang, P., Phillips, J., Cotner, J.B. and Sadowsky, M.J. (2014a) Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River. Frontiers in Microbiology 5, 524.CrossRefGoogle ScholarPubMed
Staley, C., Gould, T.J., Wang, P., Phillips, J., Cotner, J.B. and Sadowsky, M.J. (2014b) Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Frontiers in Microbiology 5, 414. doi: 10.3389/fmicb.2014.00414.CrossRefGoogle ScholarPubMed
Staley, C., Gould, T.J., Wang, P., Phillips, J., Cotner, J.B. and Sadowsky, M.J. (2014c) High-throughput functional screening reveals low frequency of antibiotic resistance genes in DNA recovered from the Upper Mississippi River. Journal of Water Health 13, 693703. doi: 10.2166/wh.2014.215.CrossRefGoogle Scholar
Staley, C., Gould, T.J., Wang, P., Phillips, J., Cotner, J.B. and Sadowsky, M.J. (2015a) Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Science of the Total Environment 505, 435445. doi: 10.1016/j.scitotenv.2014.10.012.CrossRefGoogle ScholarPubMed
Staley, C., Johnson, D., Gould, T.J., Wang, P., Phillips, J., Cotner, J.B. and Sadowsky, M.J. (2015b) Frequencies of heavy metal resistance are associated with land cover type in the Upper Mississippi River. Science of the Total Environment 511, 461468. doi: 10.1016/j.scitotenv.2014.12.069.CrossRefGoogle ScholarPubMed
Staley, C., Unno, T., Gould, T.J., Jarvis, B., Phillips, J., Cotner, J.B. and Sadowsky, M.J. (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. Journal of Applied Microbiology 115, 11471158. doi: 10.1111/jam.12323.CrossRefGoogle ScholarPubMed
Telias, A., White, J.R., Pahl, D.M., Ottesen, A.R. and Walsh, C.S. (2011) Bacterial community diversity and variation in spray water sources and the tomato fruit surface. BMC Microbiology 11, 81. doi: 10.1186/1471-2180-11-81.CrossRefGoogle ScholarPubMed
Temperton, B. and Giovannoni, S.J. (2012) Metagenomics: microbial diversity through a scratched lens. Current Opinion in Microbiology 15, 605612. doi: 10.1016/j.mib.2012.07.001.CrossRefGoogle ScholarPubMed
Torres-Cortés, G., Millán, V., Ramírez-Saad, H.C., Nisa-Martínez, R., Toro, N. and Martínez-Abarca, F. (2011) Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environmental Microbiology 13, 11011114. doi: 10.1111/j.1462-2920.2010.02422.x.CrossRefGoogle ScholarPubMed
Tucker, C.S. (1996) The ecology of channel catfish culture ponds in Northwest Mississippi. Reviews in Fish Science 4, 155. doi: 10.1080/10641269609388577.CrossRefGoogle Scholar
Unno, T., Di, D.Y., Jang, J., Suh, Y.S., Sadowsky, M.J. and Hur, H.G. (2012) Integrated online system for a pyrosequencing-based microbial source tracking method that targets Bacteroidetes 16S rDNA. Environmental Science and Technology 46, 9398. doi: 10.1021/es201380c.CrossRefGoogle Scholar
Unno, T., Jang, J., Han, D., Kim, J.H., Sadowsky, M.J., Kim, O.S., Chun, J. and Hur, H.G. (2010) Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environmental Science and Technology 44, 77777782. doi: 10.1021/es101500z.CrossRefGoogle ScholarPubMed
Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D.Y., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H. and Smith, H.O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 6674.CrossRefGoogle ScholarPubMed
Wan, X.-F., Barnett, J.L., Cunningham, F., Chen, S., Yang, G., Nash, S., Long, L.-P., Ford, L., Blackmon, S., Zhang, Y., Hanson, L. and He, Q. (2013) Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing. Virus Genes 46, 441446. doi: 10.1007/s11262-013-0878-2.CrossRefGoogle ScholarPubMed
Wilhelm, L.J., Tripp, H.J., Givan, S.A., Smith, D.P. and Giovannoni, S.J. (2007) Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biology Direct 2, 27. doi: 10.1186/1745-6150-2-27.CrossRefGoogle ScholarPubMed
Woodhouse, J.N., Fan, L., Brown, M.V., Thomas, T. and Neilan, B.A. (2013) Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges. ISME Journal 7, 18421851. doi: 10.1038/ismej.2013.65.CrossRefGoogle ScholarPubMed
Wooley, J.C. and Ye, Y. (2009) Metagenomics: facts and artifacts, and computational challenges. Journal of Computer Science and Technology 25, 7181. doi: 10.1007/s11390-010-9306-4.CrossRefGoogle ScholarPubMed
Wooley, J.C., Godzik, A. and Friedberg, I. (2010) A primer on metagenomics. PLoS Computational Biology 6, e1000667.CrossRefGoogle ScholarPubMed
Youssef, N., Sheik, C.S., Krumholz, L.R., Najar, F.Z., Roe, B.a. and Elshahed, M.S. (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Applied Environmental Microbiology 75, 52275236. doi: 10.1128/AEM.00592-09.CrossRefGoogle ScholarPubMed
Yutin, N., Suzuki, M.T., Teeling, H., Weber, M., Venter, J.C., Rusch, D.B. and Béjà, O. (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environmental Microbiology 9, 14641475. doi: 10.1111/j.1462-2920.2007.01265.x.CrossRefGoogle ScholarPubMed