Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T21:01:19.041Z Has data issue: false hasContentIssue false

Allometric models for sex ratio determination in all stages of ontogeny of Chelonia mydas from Bahía de los Ángeles, México

Published online by Cambridge University Press:  26 August 2020

Elena Solana-Arellano*
Affiliation:
Departamento de Ecología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, Baja California, 22860, México
David Ramírez-Delgado
Affiliation:
Departamento de Ecología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, Baja California, 22860, México
Erika Santacruz-López
Affiliation:
Bahía de los Ángeles, Ensenada, Baja California, CP 22980, México.
*
Author for correspondence: Elena Solana-Arellano, E-mail: esolana@cicese.mx

Abstract

In order to determine the sex of Chelonia mydas individuals found within one of the principal foraging areas of the Gulf of California during any given stage of ontogeny, 529 individuals were sampled in Bahía de los Ángeles from 1995–2012, and their morphometric data were collected. A principal component analysis (PCA) was performed for the morphometric variables, and two principal components were obtained that unambiguously separated sexes and ontogenetic stages. The first component was defined by straight carapace length (SCL), curve carapace length (CCL), plastron length (PL) and carapace depth (CD), while the second factor was represented by total tail length (TTL). Allometric models were fitted with the most important variables determined by the PCA. The model PL = αSCLβ was able to distinguish between adults and immature individuals. For adult organisms, the model that best separated males from females was TTL = αSCLβ. Adult females had SCL values of 66–96.7 cm and TTL values of 16.3–25 cm, while adult males had SCL values of 66.4–12.5 cm and TTL values > 25 cm. As the organisms were considered immature only if SCL < 77.3, we were able to determine the TTL values for immature individuals by using elemental mathematics and solving for SCL in the equation TTL = αSCLβ for each group (i.e. adult females, adult males and immatures). So, considering the mathematical approach and acknowledging the lack of background information, immature individuals may be considered potential females if the TTL value is between 7.04–17.8 cm and potential males if the TTL value > 17.8 cm.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Centro de Investigación Científica y Educación Superior de Ensenada. 3918 Carretera Tijuana-Ensenada, Zona Playitas, Ensenada 22860, Mex.

References

Allen, CD, Robbins, MN, Eguchi, T, Owens, DW, Meyla, AB, Meylan, PA, Kellar, NM, Schwenter, JA, Nollens, HH, Leroux, RA, Dutton, PH and Seminoff, JA (2015) First assessment of the sex ratio for an East Pacific green sea turtle foraging aggregation: validation and application of a testosterone ELISA. PLoS ONE 10, 125. doi: https://doi.org/10.1371/journal.pone.0138861.CrossRefGoogle ScholarPubMed
Bjorndal, KA, Bolten, AB and Chaloupka, MY (2000) Green turtle somatic growth model: evidence for density dependence. Ecological Applications 10, 269282.Google Scholar
Bolten, AB (1999) Techniques for measuring sea turtles. In Eckert, KL, Bjorndal, KA, Abreu-Grobois, FA and Donnelly, M (eds), Research and Management Techniques for the Conservation of Sea Turtles. IUCN/SSC Marine Turtle Specialist Group Publication No. 4. Blanchard, PA: Consolidated Graphic Communications.Google Scholar
Bolten, AB and Bjorndal, K (1992) Blood profiles for a wild population of green turtles (Chelonia mydas) in the southern Bahamas: size-specific and sex-specific relationships. Journal of Wildlife Diseases 28, 407413.Google ScholarPubMed
Casale, P, Freggi, DA, Basso, R and Argano, R (2005) Size at male maturity, sexing methods and adult sex ratio in loggerhead turtles Caretta caretta from Italian waters investigated through tail measurements. Herpetological Journal 15, 145148.Google Scholar
Cavazos, T (2008) Clima. In Daneman, GD and Ezcurra, E (eds), Bahía de los Ángeles: recursos naturales y comunidad: Línea Base 2007. Tlalpan, México D.F.: Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), pp. 6792.Google Scholar
Grossman, A, Mendonca, P, Rodríguez da Costa, M and Bellini, C (2007) Morphometrics of green turtle at the Atol das Rocas de Marine Biological Reserve. Marine Turtle News Letter 118, 1214.Google Scholar
Hochscheid, S, Bentivegna, F and Hays, GC (2005) First records of dive durations for a hibernating sea turtle. Biology Letters 1, 8286.Google ScholarPubMed
Ishihara, T and Kamezaki, N (2011) Size at maturity and tail elongation of loggerhead turtles (Caretta caretta) in the North Pacific. Chelonian Conservation and Biology 10, 281287.CrossRefGoogle Scholar
IUCN (2019) The IUCN Red List of Threatened Species. Available at http://www.iucnredlist.org/.Google Scholar
Koch, V, Brooks, LB and Nichols, WJ (2006) Population ecology of the green/black turtle (Chelonia mydas) in Bahia Magdalena, Mexico. Marine Biology 153, 3546.CrossRefGoogle Scholar
Limpus, CJ and Reed, PC (1985) The green turtle, Chelonia mydas, in Queensland: a preliminary description of the population structure in a coral reef feeding ground. In Grigg, G, Shrine, R and Ehmann, H (eds), Biology of Australian Frogs and Reptiles. Chipping Norton, Australia: Surrey Beaty and Sons, pp. 4752.Google Scholar
Limpus, CJ, Bell, IP and Miller, JD (2009) Mixed stocks of green turtles foraging on Clack Reef, Northern Great Barrier Reef identified from long term tagging studies. Marine Turtle Newsletter 123, 35.Google Scholar
Lin, L, Gaillard, D, Hu, Q, Yang, J, Chen, Z, Zhou, F, Xiao, F and Shi, H (2017) Sexual dimorphism in body size and shape of Beal's eyed turtle (Sacalia bealei). Chelonian Conservation and Biology 16, 180184.CrossRefGoogle Scholar
Mazaris, AD, Kornaraki, L, Matsinos, YG and Margaritoulis, D (2004) Modeling the effect of sea surface temperature on sea turtle nesting activities by investigating seasonal trends. Natural Research Modeling 17, 445466.CrossRefGoogle Scholar
Meylan, PA, Davis, K and Meylan, AB (1994) Predicting sexual maturity of male green turtles from morphological data. In Schroeder BA, Witherington BE (Compilers), Proceedings of 13th Annual Symposium of Sea Turtle Biology Conservancy. NOAA Technical Memoirs NMFS-SEFSC-341:108.Google Scholar
Meylan, PA, Meylan, AB and Gray, JA (2011) The ecology and migrations of sea turtles 8. Test of the development habitat hypothesis. Bulletin of the American Museum of Natural History 357, 170.Google Scholar
NOM-059-SEMARNAT-2010. Norma Oficial Mexicana 059 (2010) Protección Ambiental-Especies nativas de México de Flora y Fauna Silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión cambio-Lista de especies en riesgo. SEMARNAT. Diario Oficial de la Federación. México, Jueves 30 de diciembre de 2010.Google Scholar
Pilcher, NJ (2010) Population structure and growth of immature green turtles at Mantanani, Sabah, Malaysia. Journal of Herpetology 44, 168171.Google Scholar
Prior, B, Booth, DT and Limpus, CJ (2015) Investigating diet and diet switching in green turtle (Chelonia mydas). Australian Journal of Zoology 63, 365375.CrossRefGoogle Scholar
Rees, AF, Margaritoulis, D, Newman, R, Riggall, TE, Tsaros, P, Zbinden, JA and Godley, BJ (2013) Ecology of loggerhead marine turtles Caretta caretta in a neritic foraging habitat: movements, sex and growth rates. Marine Biology 160, 519529.CrossRefGoogle Scholar
Rees, AF, Alfaro-Shigueto, J, Barata, PCR, Bjorndal, KA, Bolten, AB, Borjeau, J, Broderick, AC, Campbel, LM, Cardona, L, Carreras, C, Casale, P, Ceriani, SA, Dutton, PH, Eguchi, T, Formia, A, Fuentes, MMPB, Fuller, WJ, Girondot, M, Godfrey, MH, Haman, M, Hart, KH, Hays, GC, Hochscheid, S, Kaska, Y, Jensen, MP, Mangel, JC, Mortimer, JA, Naro-Maciel, E, Ng, CKY, Nichols, WJ, Phillot, AD, Reina, D, Revuelta, O, Scholfield, G, Seminoff, JA, Shanker, K, Tomás, J, van de Merwe, JP, Van Houtan, KS, Vander Zander, HB, Wallace, BP, Wedemeyer-Strombel, KR, Work, TM and Godley, BJ (2016) Are we working towards global research priorities for management and conservation of sea turtles? Endangered Species Research 31, 337382.CrossRefGoogle Scholar
Saba, VS, Santidrián-Tomillo, P, Reina, RD, Spotila, JR, Musick, JA, Evans, DA and Paladino, FV (2007) The effect of the El Niño Southern Oscillation on the reproductive frequency of eastern Pacific leatherback turtles. Journal of Applied Ecology 44, 395404.CrossRefGoogle Scholar
Seminoff, JA (2000) The Biology of the East Pacific Green Turtle (Chelonia mydas agassizii) at a Warm Temperate Foraging Area in the Gulf of California, Mexico. PhD thesis, University of Arizona, USA.Google Scholar
Seminoff, JA (2004) (Southwest Fisheries Science Center, U.S.) Chelonia mydas. The IUCN Red List of Threatened Species, 2004: e. T4615A11037468.Google Scholar
Seminoff, JA, Jones, OTT, Resendiz, A, Wallace, JN and Chaloupka, MY (2003) Monitoring green turtles (Chelonia mydas) at a coastal foraging area in Baja California, Mexico: multiple indices describe population status. Journal of the Marine Biological Association of the United Kingdom 83, 13551362.CrossRefGoogle Scholar
Seminoff, JA, Reséndiz-Hidalgo, J, de Reséndiz, BJ, NIchols, WJ and Todd-Jones, T (2008) Tortugas Marinas. In Daneman, GD and Ezcurra, E (eds), Bahía de los Ángeles: recursos naturales y comunidad: Línea Base 2007. Tlalpan, México D.F.: Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), pp. 457494.Google Scholar
Shertzer, KW, Avens, L, Braun McNeill, J, Goodman Hall, A and Harms, CA (2018) Characterizing sex ratios of sea turtle populations: a Bayesian mixture modeling approach applied to juvenile loggerheads (Caretta caretta). Journal of Experimental Marine Biology and Ecology 504, 1019, https://doi.org/10.1016/j.jembe.2018.03.006Google Scholar
Thomson, JA, Burkholder, D, Heithaus, MR and Dill, LM (2009) Validation of a rapid visual- assessment technique for categorizing the body condition of green turtles (Chelonia mydas) in the field. Copeia 2, 251255.CrossRefGoogle Scholar
Van Dam, R and Diez, CE (1998) Caribbean hawksbill turtle morphometrics. Bulletin of Marine Science 62, 145155.Google Scholar
Vega, C and Stayton, CT (2011) Dimorphism in shell shape and strength in two species of emydid turtle. Herpetologica 67, 397405.CrossRefGoogle Scholar
Wibbels, T (2000) Determinación del sexo de Tortugas marinas en hábitats de alimentación. In Eckert, KL, Bjorndal, KA, Abreu-Grobois, FA and Donnely, M (eds), Técnicas de Investigación Y Manejo Para la Conservación de las Tortugas Marinas. Grupo de Especialistas en Tortugas Marinas. Blanchard, PA: Unión Internacional para la Conservación, Publicación 4, pp. 160164.Google Scholar
Wibbels, T, Owens, DW, Morris, YA and Amoss, MS (1987) Sexing techniques and sex ratios for immature loggerhead sea turtles captured along the Atlantic Coast of the United States. In Witzell, WN (ed.), Ecology of East Florida Sea Turtles. Proceedings of the Cape Canaveral, Florida Sea Turtle Workshop, Miami, Florida, 26–27 February. NOAA Technical Report. NOMFS 53. Miami, FL: U.S. Government Printing Office, pp. 65–74.Google Scholar