Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T16:34:35.185Z Has data issue: false hasContentIssue false

Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia)

Published online by Cambridge University Press:  29 July 2008

Jannet Elloumi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax (Tunisie)
Wassim Guermazi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax (Tunisie)
Habib Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax (Tunisie)
Abderrahmen Bouain
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de Recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5 – BP 1171 – CP 3000 Sfax (Tunisie)
Lotfi Aleya*
Affiliation:
Université de Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 1, Place Leclerc, 25030 Besançon cedex, France
*
Correspondence should be addressed to: Lotfi Aleya, Université de Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 1, Place Leclerc, 25030 Besançon cedex, France email: lotfi.aleya@univ-fcomte.fr

Abstract

The distribution of abundance and biomass of prokaryotes, flagellates, ciliates and phytoplankton, were studied in five ponds of increasing salinity in the Sfax solar saltern (Tunisia) coupled with environmental factors. The results showed that abundance of eukaryotic microorganisms decreased with increasing salinity of the ponds whereas prokaryotes (heterotrophic bacteria and Archaea) were abundant in the hyper-saline ponds. Phototrophic picoplankton was found in a large range of salinity values (70 and 200‰). Phototrophic non-flagellated nanoplankton which dominated in the first sampled pond was substituted by phototrophic flagellated nanoplankton in the other ponds. Heterotrophic nanoplankton dominated in the crystallizer pond but its quantitative importance declined in the less saline ponds. Diatoms and dinoflagellates were the major contributors to phytoplankton abundance in the first ponds (>90% of total abundance). Ciliated protozoa were found in all the ponds except in the crystallizer in which prokaryotes proliferated. Oligotrichida and Heterotrichida were the most abundant ciliate groups. Overall, species richness decreased with salinity gradient. We propose a simplified diagram of the Sfax saltern's food web showing the dominant role of the microbial loop along the salinity gradient.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agawin, N.S.R., Duarte, C.M. and Agustí, S. (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45, 591600.Google Scholar
Agawin, N.S.R., Duarte, C.M., Agusti, S. and Vaqué, D. (2004) Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquatic Microbial Ecology 34, 5767.Google Scholar
Alder, V.A. (1999) Tintinnoinea. In Boltovsky, D. (ed.) South Atlantic zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 321384.Google Scholar
Aleya, L. (1989) Seasonal couplings between adenyl-nucleotides and photosynthetic activity of size-fractionated phytoplankton in a eutrophic lake. European Journal of Protistology 24, 381391.CrossRefGoogle Scholar
Aleya, L. and Amblard, C. (1989) Quantitative importance of different phytoplankton size-fractions in a eutrophic lake. Hydrobiologia 183, 97114.Google Scholar
Aleya, L., Marvalin, O. and Devaux, J. (1988) Couplings of primary production and bacterial heterotrophic activity couplings in a eutrophic lake (Lake Aydat, France). Journal of Water Science 1, 2335.Google Scholar
Aleya, L., Hartmann, H.J. and Devaux, J. (1992) Evidence for the contribution of ciliates to denitrification in a eutrophic lake. European Journal of Protistology 28, 316321.Google Scholar
Amit, O. and Bentor, Y.K. (1971) PH, dilution of saline waters. Chemical Geology 7, 307813.Google Scholar
Artolozaga, I., Ayo, B., Latatu, A., Azúa, I., Unanue, M. and Iriberri, J. (2000) Spatial distribution of protists in the presence of macroaggregates in a marine system. FEMS Microbiology Ecology 33, 191196.CrossRefGoogle Scholar
Ayadi, H., Abid, O., Elloumi, J., Bouaïn, A. and Sime-Ngando, T. (2004) Structure of the phytoplankton in two lagoons of different salinity in the Sfax saltern (Tunisia). Journal of Plankton Research 26, 669679.Google Scholar
Azam, F. and Worden, A. (2004) Microbes, molecules and marine ecosystems. Science 12, 16221624.Google Scholar
Bardavid, R.E., Ionescu, D., Oren, A., Rainey, F.A., Hollen, B.J., Bagaley, D.R., Small, A.M. and McKay, C. (2007) Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic bacteria from hypersaline environments. Hydrobiologia 573, 313.CrossRefGoogle Scholar
Bell, T. and Klaff, J. (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography 46, 12431248.Google Scholar
Brett, M.T. and Müller-Navarra, D.C. (1997) The role of highly unsaturated fatty acids in aquatic food-web processes. Freshwater Biology 38, 483499.Google Scholar
Børsheim, K.Y. and Bratback, G. (1987) Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36, 171175.Google Scholar
Brandt, S.M. and Sleigh, M.A. (2000) The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton water, UK. Estuarine, Coastal and Shelf Science 51, 91102.CrossRefGoogle Scholar
Chessel, D., Dufour, A.B. and Thioulouse, J. (2004) The ade4 package-I-One-table methods. R News 4, 10 pp.Google Scholar
Chisholm, S.W. (1992) Phytoplankton size. In Falkowski, P.G. and Woodhead, A.D. (eds) Primary productivity and biogeochemical cycles in the sea. New York: Plenum Press, pp. 213237.CrossRefGoogle Scholar
Cuevas, L.A. and Morales, C.E. (2006) Nanoheterotroph grazing on bacteria and cyanobacteria in oxic and suboxic waters in coastal upwelling areas off northern Chile. Journal of Plankton Research 28, 385397.Google Scholar
Domaizon, I., Viboud, S. and Fontvieille, D. (2003) Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy—importance of mixotrophy. FEMS Microbiology Ecology 46, 317329.Google Scholar
Drakare, S., Blomqvist, P., Bergström, A-K. and Jansson, M. (2003) Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrients content. Freshwater Biology 48, 729740.Google Scholar
Dupuy, C., Ryckaert, M., Le Gall, S. and Hartmann, H.J. (2007) Seasonal variations in planktonic community structure and production in an Atlantic coastal pond: the importance of nanoflagellates. Microbial Ecology 53, 537548.Google Scholar
Edwards, E.S., Burkill, P.H. and Sleigh, M.A. (1998) Microbial community structure in the marginal ice zone of the Bellingshausen Sea. Journal of Marine Systems 17, 8796.CrossRefGoogle Scholar
Elloumi, J., Carrias, J-F., Ayadi, H., Sime-Ngando, T., Boukhris, M. and Bouaïn, A. (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuarine, Coastal and Shelf Science 67, 2129.CrossRefGoogle Scholar
Esteban, G.F. and Finlay, B.J. (2003) Cryptic freshwater ciliates in a hypersaline Lagoon. Protist 154, 411418.Google Scholar
Estrada, M., Peter, H., Gasol, M.J., Casamayor, O.E. and Pedrós-Alió, C. (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbial Ecology 49, 281293.Google Scholar
Evans, M.S., Arts, M.T. and Robarts, R.D. (1996) Algal productivity, algal biomass, and zooplankton biomass in a phosphorus-rich saline lake: deviations from regression model predictions. Canadian Journal of Fisheries and Aquatic Sciences 53, 10481060.CrossRefGoogle Scholar
Frontier, S. (1973) Etude statistique de la dispersion du zooplancton. Journal of Experimental Marine Biology and Ecology 12, 229262.Google Scholar
Garrison, D.L., Gowing, M.M., Hughes, M.P., Campbell, L., Caron, D.A., Dennett, M.R., Shalapyonok, A., Olson, R.J., Landry, M.R. and Brown, S.L. (2000) Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep-Sea Research Part II: Topical Studies in Oceanography 47, 13871422.CrossRefGoogle Scholar
Gasol, J.M., Casamayor, E.O., Joint, I., Garde, K., Gustavson, K., Benlloch, S., Díez, B., Schauer, M., Massana, R. and Pedrós-Alio, C. (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquatic Microbial Ecology 34, 193206.Google Scholar
Gilbert, J. (2001) Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: The Mar Menor. Journal of Plankton Research 23, 207217.CrossRefGoogle Scholar
Guermazi, W., Elloumi, J., Ayadi, H., Bouaïn, A. and Aleya, L. (2008a) Coupling changes in fatty acid and protein composition of Artemia salina with environmental factors in the Sfax solar saltern (Tunisia). Aquatic Living Resources 21, 6373.Google Scholar
Guermazi, W., Elloumi, J., Ayadi, H., Bouain, A. and Aleya, L. (2008b) Rearing of Fabrea salina Henneguy (Ciliophora, Heterotrichida) with three unicellular feeds. Comptes Rendus Biologies 331, 5663.CrossRefGoogle ScholarPubMed
Gunde-Cimerman, N., Oren, A. and Plemenitaš, A. (2005) Adaptation to life at high salt concentrations in Archaea, bacteria and eukarya. Dordrecht: Springer.Google Scholar
Hahn, M.W. and Höfle, M.G. (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiology Ecology 35, 113121.CrossRefGoogle ScholarPubMed
Hartmann, H.J., Taleb, H., Aleya, L. and Lair, N. (1993) Predation on ciliates by the suspension feeding copepod Acanthodiaptomus denticornis. Canadian Journal of Fisheries and Aquatic Sciences 50, 13821393.Google Scholar
Ionescu, D., Lipski, A., Altendorf, K. and Oren, A. (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576, 1526.Google Scholar
Jiao, N., Yang, Y., Hong, N., Ma, Y., Harada, S., Koshikawa, H. and Watanabe, M. (2005) Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research 25, 12651279.Google Scholar
Karrasch, B., Parra, O., Cid, H., Mehrens, M., Pacheco, P., Urrutia, R., Valdovinos, C. and Zaror, C. (2005) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobío River, Chile. Science of the Total Environment 359, 194208.CrossRefGoogle ScholarPubMed
Laybourn-Parry, J. (1992) Protozoan plankton ecology. London: Chapman and Hall, pp. 1231.Google Scholar
Legendre, P. and Legendre, L. (1998) Numerical ecology, 2nd edition, English. Amsterdam: Elsevier Science BV.Google Scholar
Lohman, H. (1908) Untersuchungen zur Feststellung des Vollstandigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen der Kommission zur Wissenschaftlichen Untersuchung der Deutschen Meere (Abt. Kiel). 10, 131170.Google Scholar
Lovejoy, C., Legendre, L., Martineau, M-J., Bâcle, J. and Quillfeldt, C.H. (2002) Distribution of phytoplankton and other protists in the North Water. Deep-Sea Research II 49, 50275047.CrossRefGoogle Scholar
Murphy, J. and Riley, J.P. (1962) A modified single solution method for the determination of phosphate in natural water. Analytica Chimica Acta 27, 3136.Google Scholar
Muylaert, K., Van Mieghem, R., Sabbe, K., Tchx, M. and Vyverman, W. (2000) Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiologia 432, 2536.CrossRefGoogle Scholar
Oren, A. (1999) Microbiology and biogeochemistry of hypersaline environments. London CRC Press.Google Scholar
Oren, A. (2000) Salts and brines. In Withon, B.A. and Potts, M. (eds) The ecology of cyanobacteria. Dordrecht: Kluwer Academic Publishers, pp. 281306.Google Scholar
Pedrós-Alió, C. (2003) Trophic ecology of solar salterns. In Ventosa, A (ed.) Halophilic microorganisms. Berlin: Springer-Verlag, pp. 3348.Google Scholar
Pedrós-Aliò, C., Calderon-Paz, J.I., MacLean, M., Medina, G., Marrasé, C., Gasol, J.M and Guixa-Boixereu, N.G. (2000) The microbial food web along salinity gradients. Microbial Ecology 32, 143155.Google Scholar
Petz, W. (1999) Ciliophora. In Boltovsky, D. (ed.) South Atlantic zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 265319.Google Scholar
Pirlot, S., Vanderheyden, J., Descy, J-P. and Servais, P. (2005) Abundance and biomass of heterotrophic microorganisms in Lake Tanganyika. Freshwater Biology 50, 12191232.Google Scholar
Porter, K.G. and Feig, Y.S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25, 943948.Google Scholar
Quintana, X.D. (2002) Measuring the intensity of disturbance in zooplankton communities of Mediterranean salt marshes using multivariate analysis. Journal of Plankton Research 24, 255265.CrossRefGoogle Scholar
Rodríguez-Valera, F. (1988) Characteristics and microbial ecology of hypersaline environments. In Rodríguez-Valera, F (ed.) Halophilic bacteria, Volume I. Boca Raton, FL: CRC Press, pp. 330Google Scholar
Sherr, E.B. and Sherr, B.F. (1991) Planktonic microbes: tiny cells at the base of the ocean's food webs. Trends in Ecology and Evolution 6, 5054.Google Scholar
Sin, Y. and Wetzel, R.L. (2000) Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). Journal of Plankton Research 22, 19451960.CrossRefGoogle Scholar
Strüder-Kypke, M.C. and Montagnes, D.J.S. (2002) Development of web-based guides to planktonic protists. Aquatic Microbial Ecology 27, 203207.Google Scholar
Szelag-Wasielewska, E. (2004) Dynamics of autotrophic picoplankton communities in the epilimnion of a eutrophic lake (Strzeszńskie Lake, Poland). Annales de Limnologie–International Journal of Limnology 40, 113120.Google Scholar
Tada, S., Nakano, Y., Takemura, A. and Montani, S. (2003) Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. Journal of Plankton Research 25, 991997.Google Scholar
Takamura, N. and Nojiri, Y. (1994) Picophytoplankton biomass in relation to lake trophic state and the TN:TP ratio of lake water in Japan. Journal of Phycology 30, 439444.Google Scholar
Thouvenot, A., Debroas, D., Richardot, M. and Devaux, J. (1999) Impact of natural metazooplankton assemblage on planktonic microbial communities in a newly flooded reservoir. Journal of Plankton Research 21, 179199.CrossRefGoogle Scholar
Uthermöhl, H. (1958) Zur Vervollkommung der quantitativen Phytoplankton Metodik. Mitinternational Verein Limnologie 9, 138Google Scholar
Wetzel, R.G. and Likens, G.E. (2000) Limnological analysis. New York: Springer-Verlag, 429 pp.Google Scholar
Williams, W.D. (1998) Salinity as determinant of the structure of biological communities in salt lakes. Hydrobiologia 381, 191201.CrossRefGoogle Scholar
Zippel, B. and Shimmele, M. (1999) Composition and dynamics of autotrophic picoplankton and spectral light distribution in saline lignite mining of Germany. Aquatic Ecosystem Health and Management 2, 319329.CrossRefGoogle Scholar