Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T18:27:51.063Z Has data issue: false hasContentIssue false

A Study of the Respiration and of the Function of Hæmoglobin in Planorbis corneus and Arenicola marina

Published online by Cambridge University Press:  11 May 2009

Mabel A. Borden
Affiliation:
This work was carried out while holding an 1851 Exhibition Scholarship

Extract

A study of the respiration and of the function of hæmoglobin in Planorbis corneus and Arenicola marina has been undertaken.

The oxygen consumption of Planorbis is of the order of 0·026 c.c. per gm. per hour, measured at 15° C.

The blood volume is approximately 0·581 c.c. per gm.

The combined oxygen of the blood is 0·013 c.c. per c.c. of blood, the total oxygen being 0·014 c.c. per c.c. The total oxygen capacity of the blood per gm. of snail is estimated to be 0·0081 c.c.

The oxygen supplied by the blood is calculated to last 18 minutes and is found by experiment to last 25 minutes.

The snail does not immediately oxidise its hæmoglobin after subjection to anaerobiosis. Oxidation begins after 10 minutes and is complete within 20 minutes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1931

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashworth, J. H. 1904. Arenicola. L.M.B.C. Memoirs, XI, pp. 118.Google Scholar
Barcroft, J., and Barcroft, H. 1924. The Blood Pigment of Arenicola. Proc. Roy. Soc. B.; Vol. XCVI, pp. 2842.Google Scholar
Barcroft, J. 1914. The Respiratory Function of the Blood. Camb. Univ. Press, pp. 320.CrossRefGoogle Scholar
Barcroft, J. 1928. The Respiratory Function of the Blood. Part 2. Hæmoglobin. Camb. Univ. Press, pp. 200.Google Scholar
Bruce, J. R. 1928. Physical Factors on the Sandy Beach. Parts 1 and 2. Jour. Mar. Biol. Assoc., N.S., Vol. XV, pp. 535552.CrossRefGoogle Scholar
Davis, J. G., and Slater, W. K. 1926. The Aerobic and Anaerobic Metabolism of the Common Cockroach (Periplaneta orientalis). Part 1. Biochem. Jour., Vol. XX, pp. 11671172.CrossRefGoogle Scholar
Davis, J. G., and Slater, W. K. 1928. The Aerobic and Anaerobic Metabolism of the Common Cockroach (Periplaneta orientalis). Part 3. Biochem. Jour., Vol. XXII, pp. 331337.CrossRefGoogle Scholar
Davis, J. G., and Slater, W. K. 1928. The Anaerobic Metabolism of the Earthworm (Lumbricus terrestris). Biochem. Jour., Vol. XXII, pp. 338343.CrossRefGoogle Scholar
Dixon, M., and Elliott, K. A. C. 1930. The Use of the Barcroft Apparatus for the Measurement of Tissue Respiration. Biochem. Jour., Vol. XXIV, pp. 820833.CrossRefGoogle Scholar
Ellis, A. E. 1926 British Snails. Clarendon Press, pp. 275.Google Scholar
Fox, C. J. J. 1905. On the Determination of the Atmospheric Gases Dissolved in Sea Water. Cons. Int. p. l'Explor. de la Mer. Publ. de Circ., No. 21, pp. 24.Google Scholar
Fox, C. J. J. 1907. On the Coefficient of Absorption of Atmospheric Gases in Distilled Water and Sea Water. Part 1. Nitrogen and Oxygen. Cons. Int. p. l'Explor. de la Mer. Publ. de Circ., No. 41, pp. 23.Google Scholar
Gamble, F. W., and Ashworth, J. H. 1898. The Habits and Structure of Arenicola marina. Quart. Jour. Micr. Sc., Vol. XLI, pp. 142.Google Scholar
Gamble, F. W., and Ashworth, J. H. 1900. The Anatomy and Classification of the Arenicolidæ, with some Observations on their Postlarval Stages. Quart. Jour. Micr. Sc., Vol. XLIII, pp. 411569.Google Scholar
Haldane, J. 1898. A Contribution to the Chemistry of Hæmoglobin and its Immediate Derivatives. Jour. Phys., Vol. XXII, pp. 298306.Google Scholar
Haldane, J. 1900. The Ferricyanide Method of Determining the Oxygen Capacity of Blood. Jour. Phys., Vol. XXV, pp. 295302.Google Scholar
Hartree, W., and Hill, A. V. 1921. The Regulation of the Supply of Energy in Muscular Contraction. Jour. Phys., Vol. LV, pp. 133158.Google Scholar
Hill, A. V. 1913. The Energy Degraded in the Recovery Processes of Stimulated Muscles. Jour. Phys., Vol. XLVI, pp. 2880.Google Scholar
Hill, A. V. 1914. The Oxidative Removal of Lactic Acid. Jour. Phys., Vol. XLVIII, Proc. Phys. Soc., pp. xxi.Google Scholar
Hill, A. V. 1931. Adventures in Biophysics. Univ. Penn. Press, pp. 162.CrossRefGoogle Scholar
Hill, A. V., Long, C. N. H., and Lupton, H. 1924. Muscular Exercise, Lactic Acid, and the Supply and Utilisation of Oxygen. Parts 1–3. Proc. Roy. Soc., Vol. XCVI, pp. 438475.Google Scholar
Keilin, D. 1928. Cytochrome and Respiratory Enzymes. Proc. Roy. Soc. B., Vol. CIV, pp. 206253.Google Scholar
Krogh, A. 1916. The Respiratory Exchange of Animals and Man. London, pp. 173.CrossRefGoogle Scholar
Leitch, I. 1916. The Function of Hæmoglobin in Invertebrates with Special Reference to Planorbis and Chironomus Larvæ. Jour. Phys., Vol. L, pp. 370379.Google Scholar
Meyerhof, O. 1920. Die Energieumwandlungen im Muskel. Parts 1 and 2, Pflüger's Arch. f. d. ges. Phys., Bd. 182, pp. 232317.CrossRefGoogle Scholar
Meyerhof, O. 1920. Die Energieumwandlungen im Muskel. Part 3. Pflüger's Arch. f. d. ges. Phys., Bd. 185, pp. 1132.CrossRefGoogle Scholar
Reid, D. M. 1929. On Some Factors Limiting the Habitat of Arenicola marina. Journ. Mar. Biol. Assoc., N.S., Vol. XVI, pp. 109116.CrossRefGoogle Scholar
Slater, W. K. 1925. The Nature of the Metabolic Processes in Ascaris lumbricoides. Biochem. Jour., Vol. XIX, pp. 604610.CrossRefGoogle Scholar
Slater, W. K. 1927. The Aerobic and Anaerobic Metabolism of the Common Cockroach (Periplaneta orientalis). Part 2. Biochem. Jour., Vol. XXI, pp. 198203.CrossRefGoogle Scholar
Slater, W. K. 1928. Anaerobic Life in Animals. Biol. Rev., Vol. III, pp. 303328.CrossRefGoogle Scholar
Van Slyke, D. D. 1927. Note on a Portable Form of the Manometric Gas Apparatus, and on Certain Points in the Technique of its Use. Jour. Biol. Chem., Vol. LXXIII, pp. 121126.CrossRefGoogle Scholar
Van Slyke, D. D., and Neill, J. M. 1924. The Determination of Gases in the Blood and Other Solutions by Vacuum Extraction and Manometric Measurement. Part 1. Jour. Biol. Chem., Vol. LXI, pp. 523573.CrossRefGoogle Scholar