Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T18:57:04.504Z Has data issue: false hasContentIssue false

Spatial analyses of bottlenose dolphin–fisheries interactions reveal human avoidance off a productive lagoon in the western Gulf of Mexico

Published online by Cambridge University Press:  30 August 2011

Eduardo Morteo
Affiliation:
Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Calle Hidalgo #617, Col. Río Jamapa, CP 94290, Boca del Río, Veracruz, México Laboratorio Veracruzano de Mamíferos Marinos, Acuario de Veracruz, A.C., Boulevard Manuel Ávila Camacho S/N, Playón de Hornos, CP 91700, Veracruz, Veracruz, México
Axayácatl Rocha-Olivares*
Affiliation:
Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, CP 22860, Ensenada, Baja California, México
Patricia Arceo-Briseño
Affiliation:
Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Calle Hidalgo #617, Col. Río Jamapa, CP 94290, Boca del Río, Veracruz, México
Luis G. Abarca-Arenas
Affiliation:
Instituto de Investigaciones Biológicas, Universidad Veracruzana, Avenida Luis Castelazo Ayala s/n Col. Industrial Ánimas, CP 91190, Xalapa, Veracruz, México
*
Correspondence should be addressed to: A. Rocha-Olivares, Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, CP 22860, Ensenada, Baja California, México email: arocha@cicese.mx

Abstract

Studying interactions between cetaceans and humans is fundamental to assess their ecological significance and the impact of human activities on marine wildlife. Delphinids have historically been associated with human maritime activities, and while evidence suggests that such interactions are becoming more frequent worldwide, these remain poorly studied. Areas of potential interaction and differences in dolphin affinity to interact with humans were used to test hypotheses about the spatial distribution and temporal variation in dolphin–fisheries interactions off the highly productive Alvarado lagoon, in the western Gulf of Mexico. Line-transect surveys yielded 928 dolphin, 980 vessel, and 320 fishing gear target records, the latter involving mostly the shrimp fishery. No temporal differences were found in daily relative abundance of dolphins ( = 8.1 h−1, SD = 9.7), vessels ( = 7.8 h−1, SD = 5.9) or fishing gear ( = 2.4 h−1, SD = 2.6) between two consecutive years. Non-random spatial distributions indicated higher target concentrations at the lagoon entrance; however, dolphins and fishers were found to evade each other, possibly to prevent competition; dolphins only interacted with gillnets (28.6% of vessels and 22.6% of fishing gear). We observed small areas of potentially intentional and random encounters outside the entrance of the lagoon and low or null potential for interactions elsewhere. Only 18.9% of dolphin schools (44.8% of the 172 photo-identified animals) interacted with fisheries mostly by chance. Resident individuals (N = 23) tended to avoid humans, likely in response to negative reinforcement caused by aggressions from fishers. Hence, the potential intentionality of a few individuals to interact with fisheries, show they bare higher risks while attempting to benefit from gillnetted prey. This research unveils the chronic and acute exposure of the dolphin community to artisanal fisheries within the area, having important reciprocal consequences on their distributions and activities.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M.C. and Read, A.J. (2000) Habitat selection of foraging bottlenose dolphins in relation to boat density near Clearwater, Florida. Marine Mammal Science 16, 815824.CrossRefGoogle Scholar
Bearzi, G. (2002) Interactions between cetaceans and fisheries: Mediterranean Sea. In Notarbartolo di Sciara, G. (ed.) Cetaceans in the Mediterannean and Black Seas: state of knowledge and conservation strategies. Monaco: A report to the ACCOBAMS Secretariat, pp. 7897.Google Scholar
Brotons, J.M., Grau, A.M. and Rendell, L. (2007) Estimating the impact of interactions between bottlenose dolphins and artisanal fisheries around the Balearic Islands. Marine Mammal Science 24, 112127.CrossRefGoogle Scholar
Cañadas, A. and Hammond, P.S. (2008) Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: implications for conservation. Endangered Species Research 4, 309331.CrossRefGoogle Scholar
Chilvers, B.L. and Corkeron, P.J. (2001) Trawling and bottlenose dolphins' social structure. Proceedings of the Royal Society. Biological Sciences 268, 19011905.CrossRefGoogle ScholarPubMed
Chilvers, L.B., Corkeron, P.J. and Puotinen, M.L. (2003) Influence of trawling on the behaviour and spatial distribution of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Moreton Bay, Australia. Canadian Journal of Zoology 81, 19471955.CrossRefGoogle Scholar
Delgado, A. (2002) Comparación de parámetros poblacionales de las toninas, Tursiops truncatus, en la región sureste del Golfo de México (Estados de Tabasco, Campeche Yucatán y Quintana Roo). PhD thesis. Universidad Nacional Autónoma de México, Distrito Federal, Mexico.Google Scholar
Díaz, B. (2006) Bottlenose dolphin (Tursiops truncatus) predation on a marine fin fish farm: some underwater observations. Aquatic Mammals 32, 305310.Google Scholar
Ferguson, M.C., Barlow, J., Fiedler, P., Reilly, S.B. and Gerrodette, T. (2006) Spatial models of delphinid (family Delphinidae) encounter rate and group size in the eastern tropical Pacific Ocean. Ecological Modelling 193, 645662.CrossRefGoogle Scholar
Fertl, D. and Leatherwood, S. (1997) Cetacean interactions with trawls: a preliminary review. Journal of Northwest Atlantic Fisheries Science 22, 219248.CrossRefGoogle Scholar
Fiedler, P.C. and Reilly, S.B. (1994) Interannual variability of dolphin habitats in the eastern tropical Pacific II: effects on abundances estimated from tuna vessel sightings, 1975–1990. Fisheries Bulletin 92, 451463.Google Scholar
García, M. and Morteo, E. (2008) Clasificación de marcas en la aleta dorsal de tursiones (Tursiops truncatus) foto-identificados en las aguas costeras de Veracruz, México. In XXXI Reunión Internacional sobre el Estudio de los Mamíferos MarinosSociedad Mexicana de Mastozoología Marina, A.C., 18–22 May 2008, pp. 1821.Google Scholar
Guzón, O.R. (2006) Captura incidental de cetáceos pequeños en pesquerías de red de enmalle en la región Noroeste de México. MSc thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico.Google Scholar
Hastie, G.D., Swift, R.J., Slesser, G., Thompson, P.M. and Turrell, W.R. (2005) Environmental models for predicting oceanic dolphin habitat in the Northeast Atlantic. ICES Journal of Marine Science 62, 760770.CrossRefGoogle Scholar
Hernández, I.C. (2009) Interacción del delfín costero Tursiops truncatus con embarcaciones y artes de pesca en el Sistema Arrecifal Veracruzano. MSc thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico.Google Scholar
Ingram, S.N. and Rogan, E. (2002) Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Marine Ecology Progress Series 244, 247255.CrossRefGoogle Scholar
Jennrich, R.I. and Turner, F.B. (1969) Measurement of non-circular home range. Journal Theoretical Biology 22, 227237.CrossRefGoogle ScholarPubMed
La Manna, G., Cló, S., Papale, S. and Sará, G. (2010) Boat traffic in Lampedusa waters (Strait of Sicily, Mediterranean Sea) and its relation to the coastal distribution of common bottlenose dolphins (Tursiops truncatus). Ciencias Marinas 36, 7181.CrossRefGoogle Scholar
Lauriano, G., Fortuna, C.M., Moltedo, G. and Notarbartolo di Sciara, G. (2004) Interactions between common bottlenose dolphins (Tursiops truncatus) and the artisanal fishery in Asinara Island National Park (Sardinia): assessment of catch damage and economic loss. Journal of Cetacean Research and Management 6, 165173.CrossRefGoogle Scholar
López, I. (2002) Interacción de las toninas Tursiops truncatus, con la actividad pesquera en la costa de tabasco, México. MSc thesis. Universidad Nacional Autónoma de México, Distrito Federal, Mexico.Google Scholar
Lusseau, D. (2004) The hidden cost of tourism: detecting long-term effects of tourism using behavioral information. Ecology and Society 9, 2.CrossRefGoogle Scholar
Lusseau, D. and Higham, J.E.S. (2004) Managing the impacts of dolphin-based tourism through the definition of critical habitats: the case of bottlenose (Tursiops spp.) in Doubtful Sound, New Zealand. Tourism Management 25, 657667.CrossRefGoogle Scholar
Morteo, E. and Hernández, I.C. (2007) Resultados preliminares sobre la relación entre delfines Tursiops truncatus, Embarcaciones y Artes de pesca en el Sistema Arrecifal Veracruzano. In Granados-Barba, A., Abarca-Arenas, L.G. and Vargas, J.M. (eds) Investigaciones Científicas en el Sistema Arrecifal Veracruzano. Universidad Autónoma de Campeche, pp. 241256.Google Scholar
Morteo, E., Heckel, G., Defran, R.H. and Schramm, Y. (2004) Distribution, movements and group size of the bottlenose dolphin (Tursiops truncatus; Montagu, 1821) south of Bahia San Quintin, Baja California, México. Ciencias Marinas 30, 3546.CrossRefGoogle Scholar
Novacek, S.M., Wells, R. and Solow, A.R. (2001) Short-term effects of boat traffic on bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Marine Mammal Science 17, 663688.Google Scholar
Ortega, A. (2002). Evaluación del habitat del manatí, Trichechus manatus, en el sistema lagunas de Alvarado, Veracruz. MSc thesis. Instituto de Ecología, Veracruz, MexicoGoogle Scholar
Perrin, W.F., Donovan, G.P. and Barlow, J. (1994) Gillnets and cetaceans. International Whaling Commission (Report), Special Issue 15, 2 pp.Google Scholar
Ramírez, T., Morteo, E. and Portilla, E. (2005). Basic aspects on the biology of the bottlenose dolphin, Tursiops truncatus, in the Coast of Nautla, Veracruz. In Proceedings of the 16th Biennial Conference on the Biology of Marine Mammals, 12–17 December 2005, San Diego, California, p. 230.Google Scholar
Read, A.J., Urian, K.W., Wilson, B. and Waples, D.M. (2003) Abundance of bottlenose dolphins in the bays, sounds, and estuaries of North Carolina. Marine Mammal Science 19, 5973.CrossRefGoogle Scholar
Rocklin, D., Santoni, M.C., Culioli, J.M., Tomasini, J.A., Pelletier, D. and Mouillot, D. (2009) Changes in the catch composition of artisanal fisheries attributable to dolphin depredation in a Mediterranean marine reserve. ICES Journal of Marine Science 66, 699707.CrossRefGoogle Scholar
Sarasota Dolphin Research Program (2006) Manual for field research and laboratory activities. Chicago Zoological Society and Dolphin Biology Research Institute c/o Mote Marine Laboratory, Occasional Publications, 35 pp.Google Scholar
Teixeira, M.P. (2005) Environmental predictors of bottlenose dolphin distribution and core feeding densities in Galveston Bay, Texas. PhD thesis. Texas A&M University, Texas, USA.Google Scholar
Van Winkle, W. (1975) Comparison of several probabilistic homerange models. Journal of Wildlife Management 39, 118123.CrossRefGoogle Scholar
Wells, R.S. (1993) The marine mammals of Sarasota Bay. In Roat, P., Ciciccolella, C., Smith, H. and Tomoasko, D. (eds) Sarasota Bay: 1992 Framework for Action. Sarasota National Estuary Program, pp. 9.1–9.23.Google Scholar
Wilson, B., Thompson, P.M. and Hammond, P.S. (1997) Habitat use by bottlenose dolphins: seasonal distribution and stratified movement patterns in the Moray Firth, Scotland. Journal of Applied Ecology 34, 13651374.CrossRefGoogle Scholar
Supplementary material: File

Morteo supplementary material

Morteo supplementary material

Download Morteo supplementary material(File)
File 282.1 KB