Skip to main content Accessibility help
×
Home

ON THE COHOMOLOGY OF SOME SIMPLE SHIMURA VARIETIES WITH BAD REDUCTION

  • Xu Shen (a1)

Abstract

We determine the Galois representations inside the $\ell$ -adic cohomology of some quaternionic and related unitary Shimura varieties at ramified places. The main results generalize the previous works of Reimann and Kottwitz in this setting to arbitrary levels at $p$ , and confirm the expected description of the cohomology due to Langlands and Kottwitz.

Copyright

Footnotes

Hide All

Current address: Morningside Center of Mathematics, No. 55, Zhongguancun East Road, Beijing 100190, China. E-mail: shen@math.ac.cn

Footnotes

References

Hide All
1. Arthur, J. and Clozel, L., Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, 120 (Princeton University Press, Princeton, NJ, 1989).
2. Aubert, A.-M., Baum, P., Plymen, R. and Solleveld, M., The local Langlands correspondence for inner forms of $\text{SL}_{n}$ , Res. Math. Sci. (to appear) arXiv:1305.2638.
3. Boutot, J.-F. and Zink, T., The $p$ -adic uniformization of Shimura curves, Preprint 95-107, Universität Bielefeld (1995), available at https://www.math.uni-bielefeld.de/∼zink/p-adicuni.ps.
4. Deligne, P., Kazhdan, D. and Vign’eras, M.-F., Représentations des algèbres centrales simples p-adiques, in Représentations des groupes réductifs sur un corps local, pp. 33117 (Hermann, Paris, 1984).
5. Görtz, U., On the flatness of models of certain Shimura varieties of PEL-type, Math. Ann. 321 (2001), 689727.
6. Haines, T. J., The stable Bernstein center and test functions for Shimura varieties, in Automorphic Forms and Galois Representations, London Mathematical Society Lecture Note Series, 415, Volume 2, pp. 118186 (Cambridge University Press, 2014).
7. Harris, M. and Taylor, R., The Geometry and Cohomology of some Simple Shimura Varieties, Annals of Mathematics Studies, 151 (Princeton University Press, Princeton, NJ, 2001).
8. Kottwitz, R. E., Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), 287300.
9. Kottwitz, R. E., Shimura varieties and 𝜆-adic representations, in Perspect. Math. 10, Volume 1, pp. 161209 (Academic Press, 1990).
10. Kottwitz, R. E., Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373444.
11. Kottwitz, R. E., Isocrystals with additional structure II, Compositio. Math. 109(3) (1997), 255339.
12. Kottwitz, R. E., On the 𝜆-adic representations associated to some simple Shimura varieties, Invent. Math. 108(3) (1992), 653665.
13. Langlands, R. P., On the zeta function of some simple Shimura varieties, Canad. J. Math. 31 (1979), 11211216.
14. Milne, J. S., The points on a Shimura variety modulo a prime of good reduction, in The Zeta Functions of Picard Modular Surfaces, (ed. Langlands, R. P. and Ramakrishnan, D.), pp. 151253 (CRM, 1992).
15. Rapoport, M., On the local zeta function of quaternionic Shimura varieties with bad reduction, Math. Ann. 279 (1988), 673697.
16. Rapoport, M., On the bad reduction of Shimura varieties, in Automorphic Forms, Shimura varieties, and L-Functions, Perspect. Math., 11, Volume 2, pp. 77160 (Academic Press, 1990).
17. Rapoport, M., A guide to reduction modulo p of Shimura varieties, Astérisique 298 (2005), 271318.
18. Rapoport, M. and Zink, T., Period Spaces for p-divisible Groups, Annals of Mathematics Studies, 141 (Princeton University Press, Princeton, NJ, 1996).
19. Reimann, H., The Semi-Simple Zeta Function of Quaternionic Shimura Varieties, Lecture Notes in Mathematics, 1657 (Springer, Berlin, 1997).
20. Reimann, H., On the zeta function of quaternionic Shimura varieties, Math. Ann. 317 (2000), 4155.
21. Reimann, H., Reduction of quaternionic Shimura varieties at parahoric levels, Manuscripta Math. 107(3) (2002), 355390.
22. Reimann, H., Cohomology of quaternionic Shimura varieties at parahoric levels, Manuscripta Math. 107(3) (2002), 391407.
23. Rogawski, J., Representations of GL(n) and division algebras over a p-adic field, Duke Math. J. 50 (1983), 161169.
24. Scholze, P., The Langlands–Kottwitz approach for some simple Shimura varieties, Invent. Math. 192(3) (2013), 627661.
25. Scholze, P., The local Langlands correspondence for GL n over p-adic fields, Invent. Math. 192(3) (2013), 663715.
26. Scholze, P., The Langlands–Kottwitz method and deformation spaces of p-divisible groups, J. Amer. Math. Soc. 26(1) (2013), 227259.
27. Scholze, P. and Shin, S.-W., On the cohomology of compact unitary group Shimura varieties at ramified split places, J. Amer. Math. Soc. 26(1) (2013), 261294.
28. Shen, X., On the $\ell$ -adic cohomology of some $p$ -adically uniformized Shimura varieties, J. Inst. Math. Jussieu (to appear) arXiv:1411.0244.
29. Tian, Y. and Xiao, L., On Goren-Oort stratification for quaternionic Shimura varieties, Compos. Math. (to appear) arXiv:1308.0790.
30. Varshavsky, Y., Lefschetz–Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal. 17(1) (2007), 271319.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

ON THE COHOMOLOGY OF SOME SIMPLE SHIMURA VARIETIES WITH BAD REDUCTION

  • Xu Shen (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.